Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1:Ta có: \(2\left(1+a^2\right)\ge\left(1+a\right)^2\)
\(\Rightarrow\frac{1}{\left(1+a\right)^2}\ge\frac{1}{\left[2\left(1+a^2\right)\right]}\)
\(\Rightarrow\frac{1}{\left(1+x\right)^2}+\frac{1}{1+y^2}\ge\frac{1}{\left[2\left(1+x^2\right)\right]}+\frac{1}{\left[2\left(1+y^2\right)\right]}\)
mà: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}=\frac{2+x^2+y^2}{1+x^2y^2+x^2+y^2}\)
\(\Rightarrow\frac{1}{1+x^2}+\frac{1}{1+y^2}=\frac{\left[2.\left(1+xy\right)+\left(x-y\right)^2\right]}{\left(1+xy\right)^2+\left(x-y\right)^2}\)
\(\Rightarrow\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge2.\frac{1+xy}{\left(1+xy\right)^2}\)
\(\Rightarrow\frac{1}{\left[2\left(1+x^2\right)\right]}+\frac{1}{\left[2\left(1+y^2\right)\right]}\ge\frac{1}{1+xy}\)
\(\Rightarrow\frac{1}{\left(1+x\right)^2}+\frac{1}{1+y^2}\ge\frac{1}{1+xy}\)
a) Ta có \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\frac{a^2+b^2}{2}\ge ab\)( chia 2 vế cho 2 )
b) \(\frac{a+1}{a}\)chưa lớn hơn hoặc bằng 2 đc , bạn thay a=2 vào thì 3/2<2
c) Ta có \(x^2\ge0\);\(y^2\ge0\);\(z^2\ge0\)
nên \(x^2+y^2+z^2\ge0\)
\(\Rightarrow x^2+y^2+z^2+3\ge3\)
Ta có \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\frac{a^2+b^2}{2}\ge ab\)
Bài 3:
Áp dụng BĐT Cauchy cho các số dương ta có:
\(\frac{1}{x}+\frac{x}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{y}+\frac{y}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
\(\frac{1}{z}+\frac{z}{4}\geq 2\sqrt{\frac{1}{4}}=1\)
Cộng theo vế các BĐT vừa thu được ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{4}\geq 3\)
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 3-\frac{x+y+z}{4}\geq 3-\frac{6}{4}\) (do \(x+y+z\leq 6\) )
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=2\)
Bài 4:
Áp dụng BĐT Cauchy cho 3 số dương:
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq 3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\sqrt[3]{1}=3\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z\)
Ta có bất đẳng thức phụ sau
\(x^2+y^2+z^2\ge xy+yz+xz\) với mọi \(x,\) \(y,\) \(z\)
\(\Leftrightarrow\) \(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)
\(\Leftrightarrow\) \(2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2\ge x^2+y^2+z^2+2\left(xy+yz+xz\right)\)
\(\Leftrightarrow\) \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow\) \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\) \(\left(\text{*}\right)\)
Vì \(x+y+z=1\) (theo giả thiết) nên từ \(\left(\text{*}\right)\) \(\Rightarrow\) \(x^2+y^2+z^2\ge\frac{1}{3}\) (đpcm)
Ta có : x2 - xy + y2 + 1
\(=x^2-2x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}+1\)
\(=\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1\)
Mà \(\left(x-\frac{y}{2}\right)^2\ge0\forall x\)
\(\left(\frac{3y}{2}\right)^2\ge0\forall x\)
Nên \(\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1\ge1\forall x\)
Vậy \(\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1>0\forall x\)
Hay : x2 - xy + y2 + 1 > 0 \(\forall x\)
\(x^2>=\dfrac{1}{4}\)
\(y^2>=\dfrac{1}{4}\)
Do đó: \(x^2+y^2>=\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)
\(x\ge\dfrac{1}{2};y\ge\dfrac{1}{2}\)=>\(xy\ge\dfrac{1}{4}\)=>\(2xy\ge\dfrac{1}{2}\).
\(x+y\ge\dfrac{1}{2}+\dfrac{1}{2}=1\)
=>\(\left(x+y\right)^2\ge1\)
=>\(x^2+2xy+y^2\ge1\)
=>\(x^2+y^2\ge1-2xy\ge1-\dfrac{1}{2}=\dfrac{1}{2}\)