K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2>=\dfrac{1}{4}\)

\(y^2>=\dfrac{1}{4}\)

Do đó: \(x^2+y^2>=\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)

2 tháng 2 2022

\(x\ge\dfrac{1}{2};y\ge\dfrac{1}{2}\)=>\(xy\ge\dfrac{1}{4}\)=>\(2xy\ge\dfrac{1}{2}\).

\(x+y\ge\dfrac{1}{2}+\dfrac{1}{2}=1\)

=>\(\left(x+y\right)^2\ge1\)

=>\(x^2+2xy+y^2\ge1\)

=>\(x^2+y^2\ge1-2xy\ge1-\dfrac{1}{2}=\dfrac{1}{2}\)

8 tháng 10 2020

Chứng minh ngược ))

2 ( x + 1 ) ( y + 1 ) = ( x + y ) ( x + y + 2 )

<=> 2xy + 2x + 2y + 2 = x+ 2xy + y+ 2x + 2y

<=> x+ 2xy + y+ 2x + 2y - 2xy - 2x - 2y - 2 = 0

<=> x2 + y2 - 2 = 0

<=> x2 + y2 = 2 ( đúng )

=> Đpcm

AH
Akai Haruma
Giáo viên
7 tháng 3 2021

** Bạn lưu ý lần sau viết đề bằng công thức toán!

Đề cần sửa thành $\leq \frac{4}{3}$

Lời giải:

Áp dụng BĐT AM-GM và Cauchy-Schwarz:

\(\frac{1}{2x^2+y^2+z^2}=\frac{1}{(x^2+z^2)+(x^2+y^2)}\leq \frac{1}{2xy+2xz}=\frac{1}{2}.\frac{1}{xy+xz}\leq \frac{1}{8}\left(\frac{1}{xy}+\frac{1}{xz}\right)\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:

\(\sum \frac{1}{2x^2+y^2+z^2}\leq \frac{1}{4}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)=\frac{x+y+z}{4xyz}\) $(1)$

Mặt khác:

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\Rightarrow 4xyz=xy+yz+xz$

$\Rightarrow 16x^2y^2z^2=(xy+yz+xz)^2\geq 3xyz(x+y+z)$ (theo BĐT AM-GM)

$\Rightarrow x+y+z\leq \frac{16}{3}xyz (2)$

Từ $(1);(2)\Rightarrow \sum \frac{1}{2x^2+y^2+z^2}\leq \frac{4}{3}$ 

Dấu "=" xảy ra khi $x=y=z=\frac{3}{4}$

NV
7 tháng 3 2021

\(\dfrac{1}{2x^2+y^2+z^2}=\dfrac{1}{x^2+y^2+x^2+z^2}\le\dfrac{1}{2xy+2xz}\le\dfrac{1}{8}\left(\dfrac{1}{xy}+\dfrac{1}{xz}\right)\)

Tương tự: \(\dfrac{1}{x^2+2y^2+z^2}\le\dfrac{1}{8}\left(\dfrac{1}{xy}+\dfrac{1}{yz}\right)\) ; \(\dfrac{1}{x^2+y^2+2z^2}\le\dfrac{1}{8}\left(\dfrac{1}{xz}+\dfrac{1}{yz}\right)\)

Cộng vế:

\(VT\le\dfrac{1}{4}\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)\le\dfrac{1}{4}.\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2=\dfrac{4}{3}\)

Đề bài sai

19 tháng 4 2017

Câu hỏi của Thu Hà - Toán lớp 8 | Học trực tuyến

19 tháng 4 2017

a) Áp dụng BĐT Cauchy-Schwarz ta có:

(12+12+12)(x2+y2+z2)≥(x+y+z)2(12+12+12)(x2+y2+z2)≥(x+y+z)2

⇒3(x2+y2+z2)≥(x+y+z)2⇒3(x2+y2+z2)≥(x+y+z)2

⇒3(x2+y2+z2)≥(x+y+z)2=12=1⇒3(x2+y2+z2)≥(x+y+z)2=12=1

⇒x2+y2+z2≥13⇒x2+y2+z2≥13

Đẳng thức xảy ra khi x=y=z=13x=y=z=13

b) Áp dụng BĐT Cauchy-Schwarz ta có:

(4+1)(4x2+y2)≥(4x+y)2(4+1)(4x2+y2)≥(4x+y)2

⇒5(4x2+y2)≥(4x+y)2⇒5(4x2+y2)≥(4x+y)2

⇒5(4x2+y2)≥(4x+y)2=12=1⇒5(4x2+y2)≥(4x+y)2=12=1

⇒4x2+y2≥15⇒4x2+y2≥15

Đẳng thức xảy ra khi x=y=15x=y=15

NV
22 tháng 12 2020

\(x+y+z=xyz\Leftrightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)=2^2-2.1=2\) (đpcm)

1 tháng 12 2017

\(3\left(x^2+y^2\right)-2\left(x^3+y^3\right)\)

\(=3\left[\left(x^2+2xy+y^2\right)-2xy\right]-2\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=3\left[\left(x+y\right)^2-2xy\right]-2\left[\left(x+y\right)^2-3xy\right]\)

\(=3\left(1-2xy\right)-2\left(1-3xy\right)\)

\(=6xy-6xy+3-2=1\)

Vậy với \(x+y=1\) thì \(3\left(x^2+y^2\right)-2\left(x^3+y^3\right)=1\)

1 tháng 12 2017

kim ngân bn giải thích cho mk dòng thứ 3 :-3xy từ đâu có vậy??

14 tháng 10 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\Rightarrow\frac{x+y+z}{xyz}=3\Leftrightarrow x+y+z=3xyz\Rightarrow\text{điều cần c/m}\Leftrightarrow x+y+z=0\left(\text{vô lí}\right)\)

7 tháng 3 2016

Ta có bất đẳng thức phụ sau

\(x^2+y^2+z^2\ge xy+yz+xz\)  với mọi  \(x,\)  \(y,\)  \(z\)

\(\Leftrightarrow\)  \(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)

\(\Leftrightarrow\)  \(2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2\ge x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

\(\Leftrightarrow\)  \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Leftrightarrow\)  \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)  \(\left(\text{*}\right)\)

Vì  \(x+y+z=1\)  (theo giả thiết) nên từ  \(\left(\text{*}\right)\)  \(\Rightarrow\)  \(x^2+y^2+z^2\ge\frac{1}{3}\)  (đpcm)

8 tháng 3 2016

troll nhau v