Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án : D
Do số cần lập là số chẵn nên có 4 cách chọn chữ sỗ c từ tập X; c ∈ {2;4;6;8}.
Ứng với mỗi cách chọn c ta có 8 cách chọn a- vì a khác c.
Khi đó; có 7 cách chọn b vì b khác a; b khác c.
Vậy từ quy tắc nhân có 4.8.7=224 số thỏa mãn.
Phương án 1: Chữ số hàng trăm là 1.
Khi đó có 8 cách chọn chữ số hàng chục và 7 cách chọn chữ số hàng đơn vị thỏa mãn đề bài.
Theo quy tắc nhân có 8.7=56 số thỏa mãn.
· Phương án 2: Chữ số hàng chục là 1.
Khi đó có 8 cách chọn chữ số hàng trăm và 7 cách chọn chữ số hàng đơn vị thỏa mãn đề bài.
Theo quy tắc nhân có 8.7=56 số thỏa mãn.
· Phương án 3: chữ số hàng đơn vị là 1.
Khi đó có 8 cách chọn chữ số hàng trăm và 7 cách chọn chữ số hàng chục.
Theo quy tắc nhân có 8.7=56 số thỏa mãn.
Vậy theo quy tắc cộng; có 56+56+56=168 số thỏa mãn.
Chọn A.
Đáp án : A
Gọi số có 3 chữ số là
Có 9 cách chọn số a từ tập X.
Có 8 cách chọn số b vì b khác a.
Có 7 cách chọn số c vì c khác a; c khác b.
Vậy theo quy tắc nhân; có 9.8.7= 504 số thỏa mãn.
Đáp án : A
+) ; c có 4 cách chọn. Chọn chữ số còn lại có 7 cách chọn.
+) ; c có 3 cách chọn. Chọn chữ số còn lại có 7 cách chọn.
+) a = 7; ; b khác 9, b có 6 cách chọn.
+) a = 7; c = 8; b có 6 cách chọn
Vậy có 3.4.7 + 3.3.7 + 3.6 + 6 = 171 số.
Đáp án : B
Gọi số có 3 chữ số là
Có 9 cách chọn chữ số a từ tập X.
Có 9 cách chọn chữ số b từ tập X.
Có 9 cách chọn chữ số c từ tập X.
Vậy theo quy tắc nhân có 9.9.9=729 số thỏa mãn.
Đáp án : D
Để tính nhanh với bài này ta dùng quy tắc phần bù.
Trước tiên ta tính số các số chẵn có 5 chữ số đôi một khác nhau và được lập ra từ các chữ số của tập A.
+ Gọi các số đó là
e có 4 cách chọn( vì x là số chẵn nên e có thể là 2;34;6;8); a có 8 cách; b có 7 cách; c có 6 cách và d có 5 cách.
Nên có tất cả 4.8.7.6.5=6720 số
+ Gọi là số bắt đầu bởi 125 và có 5 chữ số đôi một khác nhau.
Suy ra b có 3 cách chọn (b có thể là 2;4;8), a có 5 cách chọn nên có số.
+ Suy ra có tất cả 6720 - 15 = 6705 số cần tìm.
Một số chia hết cho 11 khi thỏa điều kiện: Lấy chữ số đầu tiên trừ cho chữ số thứ 2 rồi cộng cho chữ số thứ 3 rồi trừ cho chữ số thứ 4… Tiếp tục quy luật này đến chữ số cuối cùng, không phân biệt kết quả là số âm hay dương. Nếu kết quả đó chia hết cho 11 thì số ban đầu sẽ chia hết cho 11Một số chia hết cho 11 khi thỏa điều kiện: Lấy chữ số đầu tiên trừ cho chữ số thứ 2 rồi cộng cho chữ số thứ 3 rồi trừ cho chữ số thứ 4… Tiếp tục quy luật này đến chữ số cuối cùng, không phân biệt kết quả là số âm hay dương. Nếu kết quả đó chia hết cho 11 thì số ban đầu sẽ chia hết cho 11
vì vậy ta có số cần tìm là n=11m nếu n có chữ số tận cung là 1 thì ta có
11m \(\equiv\)1(mod10)
\(\Leftrightarrow\)m\(\equiv\)1(mod 10)
vây m=10k+1=>n=110k+11
do n có 6 chữ số nên
10^5\(\le\)110k+11\(\le\)10^6-1
\(\dfrac{10^5-11}{110}\le k\le\dfrac{10^6-12}{110}\)
số số nguyên trong đoạn này là
\(\left[\dfrac{10^6-12}{110}\right]-\left[\dfrac{10^5-11}{110}\right]+1=9090-908+1=8183\) số chia hết cho 11 tận cùng =1
ta có 111111,.........=> số chữ số tm đề ra nhưng tận cùng =1 là 8183-...
tương tự cho tận cùng =2,=3...=9
Phương án 1: chữ số hàng trăm là 4; chữ số hàng chục là 9 thì chỉ có 2 số là 491 và 492; 493; 495
Phương án 2: chữ sỗ hàng trăm là 4; chữ số hàng chục khác 9. Khi đó; có 7 cách chọn chữ số hàng chục từ tập X ( chữ số hàng chục thuộc {1;2;3;5;6;7;8} ứng với mỗi cách chọn chữ số hàng chục có 7 cách chọn chữ số hàng đơn vị.
Theo quy tắc nhân có 1.7.7=49 cách thỏa mãn phương án này.
Phương án 3: chữ số cần lập nhỏ hơn 400. Có 3 cách chọn chữ số hàng trăm; ứng với mỗi cách chọn chữ số hàng trăm có 8 cách chọn chữ số hàng chục và 7 cách chọn chữ số hàng đơn vị.
Theo quy tắc nhân; có 3.8.7=168 số thỏa mãn phương án này.
Vậy từ quy tắc cộng có: 4+49+168=221 số thỏa mãn.
Chọn A.