Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 5 cách chọn hàng chục và bốn cách chọn hàng đơn vị nên ta có 4*5=20 số
Gọi các số thỏa mãn đề là \(\overline{abcdef}\) (đôi một khác nhau)
- Số 7 có thể ở cả 6 vị trí.
+ Nếu a=7 => Số cách chọn các số còn lại: 9.8.7.6.5=15120 (cách)
+ Nếu a\(\ne\) 7 => Số cách chọn các số còn lại: 8.9.8.7.6.5=120960(cách)
=> Số số tự nhiên thỏa mãn: 15120+120960=136080(số)
Gọi chữ số cần lập là \(\overline{abcdef}\)
TH1: có mặt chữ số 0
Chọn 4 chữ số còn lại (ngoài 2 số 0 và 7): \(C_6^4=15\) cách
Hoán vị 6 chữ số: \(6!-5!=600\) cách
\(\Rightarrow15.600=9000\) số
TH2: không có mặt chữ số 0
Chọn 5 chữ số còn lại: \(C_6^5=6\) cách
Hoán vị 6 chữ số: \(6!=720\) cách
\(\Rightarrow6.720=4320\) số
Vậy có: \(9000+4320=13320\) số thỏa mãn
Các bộ 3 số thỏa mãn: (1;2;7);(1;3;6);(1;4;5);(2;3;5) tổng cộng 4 bộ số
Với mỗi bộ số ta có \(3!\) cách hoán vị
Do đó có: \(3!.4=24\) số
Số tự nhiên chẵn gồm 5 chữ số khác nhau và đúng hai chữ số lẻ có:
· Chọn 2 chữ số lẻ có cach; chọn 3 chữ số chẵn có cách
· Gọi số có 5 chữ số thỏa mãn đề bài là .
· Nếu a5 = 0 thì có 4! Cách chọn .
· Nếu a5 ≠ 0 thì có 2 cách chọn a5 từ 3 số chẵn đã chọn; khi đó có 3 cách chọn a1 ; 3 cách chọn a2 ; 2 cách chọn a3 và 1 cách chọn a1 .
· Theo quy tắc cộng và nhân có 10.10.(1.4!+2.3.3.2.1)=6000 số
Số tự nhiên chẵn gồm 5 chữ số khác nhau và có đúng hai chữ số lẻ đứng cạnh nhau có số.
Suy ra có 6000-3120=2880 số cần tìm.
Chọn D.
a. Gọi chữ số cần lập là \(\overline{abcd}\)
TH1: \(d=0\Rightarrow\) bộ abc có \(A_9^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 4 cách chọn (từ 2,4,6,8)
a có 8 cách chọn (khác 0 và d), b có 8 cách chọn (khác a và d), c có 7 cách chọn (khác a,b,d)
\(\Rightarrow4.8.8.7\) số
Tổng cộng: \(A_9^3+4.8.8.7=...\)
b. Chọn 4 chữ số còn lại: có \(C_7^4\) cách
Hoán vị 3 chữ số 0,1,2: có \(3!\) cách
Coi bộ 3 chữ số này là 1 số, hoán vị với 4 chữ số còn lại: \(5!\) cách
Ta đi tính số trường hợp 0 đứng đầu:
Số 0 đứng đầu trong bộ 0,1,2: có \(2!\) cách
Đặt bộ 0,1,2 đứng đầu, xếp vị trí cho 4 chữ số còn lại: \(4!\) cách
Vậy có: \(C_7^4.\left(3!.5!-2!.4!\right)=...\) số
a) ĐS: 4 số.
b) Số tự nhiên cần lập có dạng , với a, b ∈ {1, 2, 3, 4} có kể đến thứ tự.
Để lập được số tự nhiên này, phải thực hiện liên tiếp hai hành động sau đây:
Hành động 1: Chọn chữ số a ở hàng chục. Có 4 cách để thực hiện hành động này
Hành động 2: Chọn chữ số b ở hàng đơn vị. Có 4 cách để thực hiện hành động này.
Theo quy tắc nhân suy ra số các cách để lập được số tự nhiên kể trên là
4 . 4 = 16 (cách).
Qua trên suy ra từ các chữ số đã cho có thể lập được 16 số tự nhiên có hai chữ số.
c) Số tự nhiên cần lập có dạng , với a, b ∈ {1, 2, 3, 4} và a, b phải khác nhau, có kể đến thứ tự.
Để lập được số tự nhiên này, phải thực hiện liên tiếp hai hành động sau đây:
Hành động 1: Chọn chữ số a ở hàng chục.
Có 4 cách để thực hiện hành động này.
Hành động 2: Chọn chữ số b ở hàng đơn vị, với b khác chữ số a đã chọn.
Có 3 cách để thực hiện hành động này.
Theo quy tắc nhân suy ra từ các cách để lập được số tự nhiên kể trên là:
4 . 3 = 12 (cách).
Qua trên suy ra từ các chữ số đã cho có thể lập được 12 số tự nhiên có hai chữ số khác nhau.