K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2022

\(x+\dfrac{32}{x^2}=\dfrac{x}{2}+\dfrac{x}{2}+\dfrac{32}{x^2}\ge3\sqrt[3]{\dfrac{x}{2}.\dfrac{x}{2}.\dfrac{32}{x^2}}=3\sqrt[3]{\dfrac{32}{4}}=6\)

\(Min=6\Leftrightarrow\dfrac{x}{2}=\dfrac{32}{x^2}\Leftrightarrow x^3=64\Leftrightarrow x=4\)

26 tháng 1 2022

\(\Leftrightarrow x+\dfrac{\left(4\sqrt{2}\right)^2}{x^2}\Leftrightarrow x+\dfrac{4\sqrt{2}}{x}\)

ta có x>0

áp dụng BĐT Cô si ta có:

\(x+\dfrac{4\sqrt{2}}{x}\ge2\sqrt{x.\dfrac{4\sqrt{2}}{x}}\)

\(\Leftrightarrow x+\dfrac{4\sqrt{2}}{x}\ge2\sqrt{4\sqrt{2\simeq}4,75}\)

dấu = xảy ra khi x\(\simeq2,37\)

AH
Akai Haruma
Giáo viên
24 tháng 11 2021

Lời giải:

$A=\frac{x}{3}+5+\frac{12}{x}$

Áp dụng BĐT Cô-si cho các số dương:

$\frac{x}{3}+\frac{12}{x}\geq 2\sqrt{\frac{x}{3}.\frac{12}{x}}=4$

$\Rightarrow A\geq 4+5=9$

Vậy $A_{\min}=9$. Giá trị này đạt được khi $x=6$

NV
8 tháng 1 2021

\(A=2x^2+\dfrac{4}{x}=2x^2+\dfrac{2}{x}+\dfrac{2}{x}\ge3\sqrt[3]{\dfrac{8x^2}{x^2}}=6\)

\(A_{min}=6\) khi \(x=1\)

\(B=x^3+\dfrac{3}{x}=x^3+\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}\ge4\sqrt[4]{\dfrac{x^3}{x^3}}=4\)

\(B_{min}=4\) khi \(x=1\)

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Lời giải:

Áp dụng BĐT AM-GM ta có:

$x+\frac{4}{x}\geq 4$

Áp dụng BĐT Cauchy-Schwarz:

$\frac{8}{x}+\frac{32}{y}\geq \frac{(\sqrt{8}+\sqrt{32})^2}{x+y}=\frac{72}{x+y}\geq \frac{72}{6}=12$

Cộng theo vế 2 BĐT trên thì:

$P\geq 16$

Vậy $P_{\min}=16$. Giá trị này đạt tại $(x,y)=(2,4)$

NV
27 tháng 1 2021

\(f\left(x\right)=\dfrac{x^2+10x+16}{x}=x+\dfrac{16}{x}+10\ge2\sqrt{\dfrac{16x}{x}}+10=14\)

\(f\left(x\right)_{min}=14\) khi \(x=4\)

NV
7 tháng 1 2021

a.

\(y=\dfrac{4}{x}+\dfrac{1}{1-x}-1\ge\dfrac{\left(2+1\right)^2}{x+1-x}-1=8\)

\(y_{min}=8\) khi \(x=\dfrac{4}{5}\)

b.

\(y=\dfrac{1}{x}+\dfrac{1}{1-x}\ge\dfrac{4}{x+1-x}=4\)

\(y_{min}=4\) khi \(x=\dfrac{1}{2}\)

14 tháng 3 2021

Ta có \(f\left(x\right)-6=\dfrac{2x^3+4-6x}{x}=\dfrac{2\left(x-1\right)^2\left(x+2\right)}{x}\ge0\) nên \(f\left(x\right)\ge6\).

Đẳng thức xảy ra khi và chỉ khi x = 1.

14 tháng 3 2021

Cách khác thì dùng AM - GM:

\(f\left(x\right)=2x^2+\dfrac{4}{x}=2x^2+\dfrac{2}{x}+\dfrac{2}{x}\ge3\sqrt[3]{2x^2.\dfrac{2}{x}.\dfrac{2}{x}}=6\).

Xảy ra đẳng thức khi x = 1.

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Biểu thức này không có giá trị nhỏ nhất nhé bạn.