Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{1}{x^2+x}+\dfrac{1}{y^2+y}+\dfrac{1}{z^2+z}\)
\(=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{y\left(y+1\right)}+\dfrac{1}{z\left(z+1\right)}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{y}-\dfrac{1}{y+1}+\dfrac{1}{z}-\dfrac{1}{z+1}\)
Áp dụng BĐT \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) và BĐT Cauchy Shwarz dạng Engel, ta có:
\(P\ge\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{1}{4}\left(\dfrac{1}{x}+1+\dfrac{1}{y}+1+\dfrac{1}{z}+1\right)\)
\(=\dfrac{3}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{4}\)
\(\ge\dfrac{3}{4}\left[\dfrac{\left(1+1+1\right)^2}{x+y+z}\right]-\dfrac{3}{4}=\dfrac{3}{4}\left(\dfrac{9}{3}-1\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi x = y = z = 1.
Min P = 1,5 <=> x = y = z = 1.
T xài phương pháp chuẩn hóa thử, lên C3 có gặp mấy bài này chém dễ dàng, có sai thì đừng ném đá nha :vv.
Ta chứng minh BĐT sau:
\(\dfrac{1}{x^2+x}\ge-0,75x+1,25\) \(\forall x\in\left(0;1\right)\) ( Để ra cái BĐT này t dùng casio, ra cái này là ra hết bài :D )
Thật vậy: \(\dfrac{1}{x^2+x}+0,75x-1,25\ge0\)
\(\Rightarrow\dfrac{1+0,75x\left(x^2+x\right)-1,25\left(x^2+x\right)}{x^2+x}\ge0\)
\(\Rightarrow1+0,75x^3+0,75x^2-1,25x^2+1,25x\ge0\)
\(\Rightarrow0,75\left(x-1\right)^2\left(x+\dfrac{4}{3}\right)\ge0\) \(\forall x\in\left(0;1\right)\) (BĐT này luôn đúng)
Tương tự: \(\dfrac{1}{y^2+y}\ge-0,75y+1,25\)
\(\dfrac{1}{z^2+z}\ge-0,75z+1,25\)
Cộng vế theo vế các BĐT vừa chứng minh, ta được: \(P\ge-0,75\left(x+y+z\right)+1,25.3\)
\(P\ge1\)
Vậy Min P =1 khi x=y=z =1
a) x+y+z=1
⇔[(x+y)+z]2=1
Áp dụng BĐT cô si cho 2 số ta có
(a+b)+c ≥ 2\(\sqrt{\left(a+b\right)c}\)
⇔[(a+b)+c)]2 \(\ge4\left(a+b\right)c\)
⇔1 ≥ 4(a+b)c
nhân cả 2 vế cho số dương \(\dfrac{x+y}{xyz}\) được
\(\dfrac{x+y}{xyz}\ge\dfrac{4\left(x+y\right)^2c}{xyz}\)
⇔\(\dfrac{x+y}{xyz}\ge\dfrac{4z.4xy}{xyz}=16\)
Min A =16 khi \(\left\{{}\begin{matrix}x+y=z\\x=y\\x+z+y=1\end{matrix}\right.\Leftrightarrow x=y=\dfrac{1}{4};z=\dfrac{1}{2}}\)
\(A=\left(xy+yz+xz\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-xyz\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\\ =y+x+\dfrac{xy}{z}+y+z+\dfrac{yz}{x}+x+z+\dfrac{xz}{y}-\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)\\ =2\left(x+y+z\right)=2.2018=4036\)
1) \(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}=0\)
\(\Leftrightarrow\dfrac{3}{x-3}+\dfrac{6x}{x^2-9}+\dfrac{x}{x+3}=0\)
\(\Leftrightarrow\dfrac{3}{x-3}+\dfrac{6x}{\left(x-3\right)\left(x+3\right)}+\dfrac{x}{x+3}=0\)
\(\Leftrightarrow\dfrac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{6x}{\left(x-3\right)\left(x+3\right)}+\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{3\left(x+3\right)+6x+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{x^2+2.x.3+3^2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{x+3}{x-3}=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy x=-3
bạn ơi x ko thể bằng -3 đc vì
\(\dfrac{x}{x+3}=\dfrac{-3}{-3+3}=\dfrac{-3}{0}\) là sai
ÁP dụng bất đẳng thức AM-GM ta có:
\(P=\dfrac{x^2}{x^2+2yz}+\dfrac{y^2}{y^2+2xz}+\dfrac{z^2}{z^2+2xy}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+xz\right)}\)\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Dấu "=" xảy ra\(\Leftrightarrow x=y=z>0\)
Vậy \(MinP=1\Leftrightarrow x=y=z>0\)
Lời giải:
Đến thi HSG C3 còn không được phép sử dụng những BĐT nằm ngoài phạm vi kinh điển vậy mà một bài lớp 8 tại sao lại dùng đến những công cụ như thế kia? Bằng không hãy chứng minh nó trước khi sử dụng, nếu không bài làm của bạn là vô nghĩa.
Áp dụng BĐT Holder bậc 3:
BĐT Holder: Cho \(a,b,c,m,n,p,x,y,z>0\) thì có:
\((a^3+b^3+c^3)(m^3+n^3+p^3)(x^3+y^3+z^3)\geq (amx+bny+cpz)^3\)
Cách CM: Áp dụng BĐT AM-GM:
\(\frac{a^3}{a^3+b^3+c^3}+\frac{m^3}{m^3+n^3+p^3}+\frac{x^3}{x^3+y^3+z^3}\geq \frac{3axm}{\sqrt[3]{(a^3+b^3+c^3)(m^3+n^3+p^3)(x^3+y^3+z^3)}}\)
Thức hiện tương tự với các phân thức dạng trên và cộng lại ta được đpcm
Quay lại bài toán và áp dụng:
Ta có \(\left(\frac{x}{y^2}+\frac{y}{z^2}+\frac{z}{x^2}\right)\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)(1+1+1)\geq \left(\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)^3\)
\(\Leftrightarrow \left(\frac{x}{y^2}+\frac{y}{z^2}+\frac{z}{x^2}\right).3\geq \left(\frac{xy+yz+xz}{xyz}\right)^3\) \((1)\)
Ta biết BĐT quen thuộc sau \((xy+yz+xz)^2\geq 3xyz(x+y+z)\) (AM-GM)
\(\Rightarrow (xy+yz+xz)^2\geq 3(xyz)^2\rightarrow \frac{xy+yz+xz}{xyz}\geq \sqrt{3}\) \((2)\)
\((1),(2)\Rightarrow \frac{x}{y^2}+\frac{y}{z^2}+\frac{z}{x^2}\geq \sqrt{3}\)
Dấu bằng xảy ra khi \(x=y=z=\sqrt{3}\)
Dự đoán khi \(x=y=z=\sqrt{3}\) ta tìm được \(S=\sqrt{3}\)
Vậy ta sẽ chứng minh nó là giá trị nhỏ nhất của \(S\)
Tức là ta cần chứng minh \(\Sigma\dfrac{x}{y^2}\ge\sqrt{\dfrac{3\left(x+y+z\right)}{xyz}}\)
Thật vậy, \(\left(x,y,z\right)\) và \(\left(\dfrac{1}{x^2,},\dfrac{1}{y^2},\dfrac{1}{z^2}\right)\) là các số đối đã được sắp xếp lại
Vì vậy theo BĐT Rearrangement ta có:
\(\sum\frac{x}{y^2}=x\cdot\frac{1}{y^2}+y\cdot\frac{1}{z^2}+z\cdot\frac{1}{x^2}\geq x\cdot\frac{1}{x^2}+y\cdot\frac{1}{y^2}+z\cdot\frac{1}{z^2}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}.\)
Vậy ta còn phải chứng minh \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq\sqrt{\frac{3(x+y+z)}{xyz}}\)
Hay \(xy+xz+yz\geq\sqrt{3xyz(x+y+z)}\)
Sau khi bình phương và biến đổi 2 vế ta có \(\sum z^2(x-y)^2\geq0\)