\(\ne\)0 thỏa mãn x+y+z=xyz và\(\dfrac{1}{x}+\dfrac{1}{y}+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

\(=>P=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\sqrt{3}\)

CHÚC BẠN HỌC TỐT..........

16 tháng 11 2018

\(\)\(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)\rightarrow\left(a;b;c\right)\)

Viết lại đề: \(\left\{{}\begin{matrix}a+b+c=2\\2ab-c^2=4\end{matrix}\right.\) . Tính \(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^{2018}\)

\(\Leftrightarrow\left(a+b+c\right)^2-2ab+c^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac-2ab+c^2=0\)

\(\Leftrightarrow a^2+b^2+2c^2+2bc+2ac=0\)

\(\Leftrightarrow\left(a^2+c^2+2ac\right)+\left(b^2+c^2+2bc\right)=0\)

\(\Leftrightarrow\left(a+c\right)^2+\left(b+c\right)^2=0\)

\(\Leftrightarrow....\)

29 tháng 12 2017

Nhân ra thôi

30 tháng 12 2017

\(A=\left(xy+yz+xz\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-xyz\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\\ =y+x+\dfrac{xy}{z}+y+z+\dfrac{yz}{x}+x+z+\dfrac{xz}{y}-\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)\\ =2\left(x+y+z\right)=2.2018=4036\)

3 tháng 5 2017

Do \(x+\dfrac{1}{y}=y+\dfrac{1}{z}=z+\dfrac{1}{x}\)

=> \(\left\{{}\begin{matrix}x+\dfrac{1}{y}=y+\dfrac{1}{z}\Leftrightarrow x-y=\dfrac{1}{z}-\dfrac{1}{y}\Leftrightarrow x-y=\dfrac{y-z}{yz}\\y+\dfrac{1}{z}=z+\dfrac{1}{x}\Leftrightarrow y-z=\dfrac{1}{x}-\dfrac{1}{z}\Leftrightarrow y-z=\dfrac{z-x}{xz}\\z+\dfrac{1}{x}=x+\dfrac{1}{y}\Leftrightarrow z-x=\dfrac{1}{y}-\dfrac{1}{x}\Leftrightarrow z-x=\dfrac{x-y}{xy}\end{matrix}\right.\)

=> \(\left(x-y\right)\left(y-z\right)\left(z-x\right)=\dfrac{\left(y-z\right)\left(z-x\right)\left(x-y\right)}{x^2y^2z^2}\)

<=> \(\left(x-y\right)\left(y-z\right)\left(z-x\right)x^2y^2z^2=\left(y-z\right)\left(z-x\right)\left(x-y\right)\)

<=> \(\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x^2y^2z^2-1\right)=0\)

=> \(\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\) hoặc \(x^2y^2z^2-1=0\)

=> x=y=z hoặc xyz=1 hoặc xyz=-1

18 tháng 9 2017

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\sqrt{3}\)

\(\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2=3\)

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{xz}=3\)

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2.\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)=3\)

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2.\left(\dfrac{x+y+z}{xyz}\right)=3\)

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2.1=3\) ( Do x+y+z=xyz )

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=3-2=1\)

Vậy P = 1

AH
Akai Haruma
Giáo viên
2 tháng 9 2017

Lời giải:

Từ \(x+y+z=xyz\Rightarrow \frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)

Do đó:

\(M=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)

\(\Leftrightarrow M=3^2-2=7\)

Vậy \(M=7\)

AH
Akai Haruma
Giáo viên
12 tháng 4 2018

Lời giải:

Ta có:

\(\left\{\begin{matrix} x=by+cz\\ y=ax+cz\\ z=ax+by\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x-y=by-ax\\ z=ax+by\end{matrix}\right.\)

\(\Rightarrow x-y+z=2by\Rightarrow b=\frac{x+z-y}{2y}\)

Hoàn toàn tương tự ta nhận được:

\(a=\frac{y+z-x}{2x};c=\frac{x+y-z}{2z}\)

Suy ra:

\(\left\{\begin{matrix} a+1=\frac{x+y+z}{2x}\\ b+1=\frac{x+y+z}{2y}\\ c+1=\frac{x+y+z}{2z}\end{matrix}\right.\)

\(\Rightarrow \frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\) (ĐPCM)