\(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}=0\)

2/ Cho

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2017

1) \(\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}=0\)

\(\Leftrightarrow\dfrac{3}{x-3}+\dfrac{6x}{x^2-9}+\dfrac{x}{x+3}=0\)

\(\Leftrightarrow\dfrac{3}{x-3}+\dfrac{6x}{\left(x-3\right)\left(x+3\right)}+\dfrac{x}{x+3}=0\)

\(\Leftrightarrow\dfrac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{6x}{\left(x-3\right)\left(x+3\right)}+\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{3\left(x+3\right)+6x+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{x^2+2.x.3+3^2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{x+3}{x-3}=0\)

\(\Leftrightarrow x+3=0\)

\(\Leftrightarrow x=-3\)

Vậy x=-3

13 tháng 11 2017

bạn ơi x ko thể bằng -3 đc vì

\(\dfrac{x}{x+3}=\dfrac{-3}{-3+3}=\dfrac{-3}{0}\) là sai

7 tháng 5 2018

nhân cả 2 vế với 2 rồi bunhia

6 tháng 4 2018

câu c là \(\dfrac{1}{2}\)(x+y+z) nhé, mih chép nhầm

6 tháng 10 2017

\(A=x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x^2+2xy+y^2\right)-\left(xz+yz\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

\(=0\)

<><><>

\(A=\left(\dfrac{x}{y}+1\right)\left(\dfrac{y}{z}+1\right)\left(\dfrac{z}{x}+1\right)\)

\(=\dfrac{x+y}{y}\times\dfrac{y+z}{z}\times\dfrac{z+x}{x}\)

\(=\dfrac{-z}{y}\times\dfrac{-x}{z}\times\dfrac{-y}{x}\)

\(=-1\)

<><><>

\(A=\dfrac{1}{y^2+z^2-x^2}+\dfrac{1}{x^2+z^2-y^2}+\dfrac{1}{x^2+y^2-z^2}\)

\(=\dfrac{1}{\left(y+z\right)^2-2yz-x^2}+\dfrac{1}{\left(x+z\right)^2-2xz-y^2}+\dfrac{1}{\left(x+y\right)^2-2xy-z^2}\)

\(=\dfrac{1}{\left(-x\right)^2-2yz-x^2}+\dfrac{1}{\left(-y\right)^2-2xz-y^2}+\dfrac{1}{\left(-z\right)^2-2xy-z^2}\)

\(=-\dfrac{1}{2}\left(\dfrac{1}{yz}+\dfrac{1}{xz}+\dfrac{1}{xz}\right)\)

\(=-\dfrac{1}{2}\times\dfrac{x+y+z}{xyz}\)

\(=0\)

5 tháng 12 2018

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)

\(=x.\left(\dfrac{x}{y+z}+1-1\right)+y.\left(\dfrac{y}{x+z}+1-1\right)+z.\left(\dfrac{z}{x+y}+1-1\right)\)

\(=x.\left(\dfrac{x+y+z}{y+z}\right)+y.\left(\dfrac{x+y+z}{x+z}\right)+z.\left(\dfrac{x+y+z}{x+y}\right)-\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)-\left(x+y+z\right)=\left(x+y+z\right)-\left(x+y+z\right)=0\)

22 tháng 8 2017

1)

\(\Leftrightarrow\left(x^2-2+\dfrac{1}{x^2}\right)+\left(y^2-2+\dfrac{1}{y^2}\right)+z^2=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2+z^2=0\)

\(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\Rightarrow\left|x\right|=1\\y-\dfrac{1}{y}=0\Rightarrow\left|y\right|=1\\z=0\end{matrix}\right.\)

22 tháng 8 2017

dk\(x,y,z,a,b,c\ne0\)\(\left\{{}\begin{matrix}\dfrac{a}{x}=A\\\dfrac{b}{y}=B\\\dfrac{c}{z}=C\end{matrix}\right.\) \(\Rightarrow A,B,C\ne0\)

\(\left\{{}\begin{matrix}A+B+C=2\\\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}A^2+B^2+C^2+2\left(AB+BC+AC\right)=4\\\dfrac{ABC}{A}+\dfrac{ABC}{B}+\dfrac{ABC}{C}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}AB+BC+AC=0\\A^2+B^2+C^2=4\end{matrix}\right.\)

\(\left(\dfrac{a}{x}\right)^2+\left(\dfrac{b}{y}\right)^2+\left(\dfrac{c}{z}\right)^2=4\)

9 tháng 8 2017

1, Ta có: \(x+y=9\Rightarrow\left(x+y\right)^2=81\)

\(\Rightarrow x^2+2xy+y^2=81\)

\(\Rightarrow x^2+y^2=45\)

\(\Rightarrow x^2+y^2-2xy=9\)

\(\Rightarrow\left(x-y\right)^2=9\Rightarrow\left[{}\begin{matrix}x-y=3\\x-y=-3\end{matrix}\right.\)

\(A=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(\Rightarrow\left[{}\begin{matrix}A=3.63=189\\A=-3.63=-189\end{matrix}\right.\)

Vậy...