Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay \(x+y+z=12\) thì:
\(M=\frac{x+12-15}{x}+\frac{y+12-15}{y}+\frac{z+12-15}{z}\)
\(M=\frac{x-3}{x}+\frac{y-3}{y}+\frac{z-3}{z}=1-\frac{3}{x}+1-\frac{3}{y}+1-\frac{3}{z}\)
\(M=3-3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Với điều kiện trên của $x,y,z$ thì biểu thức M có max thôi em nhé.
\(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-15}{z}\)
\(M=\dfrac{x+\left(x+y+z\right)-15}{x}+\dfrac{y+\left(x+y+z\right)-15}{y}+\dfrac{z+\left(x+y+z\right)-15}{z}\)\(M=\dfrac{x-3}{x}+\dfrac{y-3}{y}+\dfrac{z-3}{z}\)
\(\dfrac{3-M}{3}=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\) cần tìm max \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=N\)
c/m không tồn tại N_max
trong 3 số (x;y;z) chỉ cần một số tiến đến 0 ; N-->vô cùng
\(M=\frac{2x+y+z-15}{x}+\frac{x+2y+z-15}{y}+\frac{x+y+2z-15}{z}\)
\(M-3=\frac{x+y+z-15}{x}+\frac{x+y+z-15}{y}+\frac{x+y+z-15}{z}\)
\(M-3=\left(x+y+z-15\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Rightarrow M\ge\left(x+y+z-15\right)\cdot\frac{9}{x+y+z}+3=\frac{3}{4}\)
\("="\Leftrightarrow x=y=z=4\)
Bài 1
M=2x+y+z−15x+x+2y+z−15y+x+y+2z−15z
M=x+12−15x+y+12−15y+z+12−15z
M=x−3x+y−3y+z−3z
M=1−3x+1−3y+1−3z
M=3−(3x+3y+3z)
M=3−3(1x+1y+1z)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
⇒1x+1y+1z≥(1+1+1)2x+y+z=9x+y+z=34
⇒3(1x+1y+1z)≥94
⇒3−3(1x+1y+1z)≤34
⇔M≤34
Vậy M max=34
Dấu " = " xảy ra khi x=y=z=4
Bai nay tim GTLN moi dung nha
\(T=\dfrac{\left(xy\right)^2}{zx+zy}+\dfrac{\left(yz\right)^2}{xy+xz}+\dfrac{\left(zx\right)^2}{yx+yz}\ge\dfrac{xy+yz+zx}{2}\ge\dfrac{3}{2}\sqrt[3]{\left(xyz\right)^2}=\dfrac{3}{2}\)
Ta có bất đẳng thức AM-GM dạng phân thức sau:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow \dfrac{1}{a+b}\le\dfrac{1}{4}(\dfrac{1}{a}+\dfrac{1}{b})\)
Dấu ''='' xảy ra khi và chỉ khi a=b
Quay lại bài toán: Áp dụng bđt trên, ta có:
\(\dfrac{1}{2x+y+z}=\dfrac{1}{(x+y)+(x+z)}\le\dfrac{1}{4}(\dfrac{1}{x+y}+\dfrac{1}{x+z})\\ \le\dfrac{1}{16}(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z})=\dfrac{1}{16}(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z})\)
Tương tự:
\(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z})\); \(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z})\)
Cộng 3 phân thức lại, ta có:
\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{4}(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z})=\dfrac{1}{4}.4=1\)
Dấu ''='' xảy ra khi và chỉ khi: \(x=y=z=\dfrac{3}{4}\)
Câu a :
Ta có : \(\sqrt{5+3x}-\sqrt{5-3x}=a\)
\(\Leftrightarrow\left(\sqrt{5+3x}-\sqrt{5-3x}\right)^2=a^2\)
\(\Leftrightarrow5+3x-2\sqrt{\left(5+3x\right)\left(5-3x\right)}+5-3x=a^2\)
\(\Leftrightarrow10-2\sqrt{25-9x^2}=a^2\)
\(\Leftrightarrow2\sqrt{25-9x^2}=10-a^2\)
\(\Leftrightarrow\sqrt{25-9x^2}=\dfrac{10-a^2}{2}\)
\(\Leftrightarrow25-9x^2=\dfrac{\left(a^2-10\right)^2}{2}\)
\(\Leftrightarrow9x^2=25-\dfrac{\left(a^2-10\right)^2}{2}\)
\(\Leftrightarrow3x=\sqrt{\dfrac{50-\left(a^2-10\right)^2}{2}}\)
\(\Leftrightarrow x=\dfrac{\sqrt{50-\left(a^2-10\right)^2}}{3\sqrt{2}}\)
\(P=\dfrac{3\sqrt{2}.\sqrt{10+2\sqrt{\dfrac{10-a^2}{2}}}}{\sqrt{50-\left(a^2-10\right)^2}}\)
Bạn tự rút gọn nữa nhé :))
Câu b : \(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-24}{z}\)
\(=\dfrac{x-3}{x}+\dfrac{y-3}{y}+\dfrac{z-12}{z}\)
\(=3-3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{4}{z}\right)\le3-3\left[\dfrac{\left(1+1+2\right)^2}{12}\right]=-1\)
Đề có sai không bạn?
ko làm đc thì chắc là sai thôi bạn