Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{\sqrt{x}+\sqrt{y}}-\frac{y}{\sqrt{x}+\sqrt{y}}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{x}-\sqrt{y}\)
\(tt:\frac{y-z}{\sqrt{y}+\sqrt{z}}=\sqrt{y}-\sqrt{z};.....\)
\(\Rightarrow\frac{x}{\sqrt{x}+\sqrt{y}}-\frac{y}{\sqrt{y}+\sqrt{x}}+.....-\frac{x}{\sqrt{x}+\sqrt{z}}=0\Rightarrow dpcm\)
Theo tính chất của phân số, ta có:
\(\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}< \frac{\sqrt{x}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\) ; \(\frac{\sqrt{y}}{\sqrt{y}+\sqrt{z}}< \frac{\sqrt{y}+\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\); \(\frac{\sqrt{z}}{\sqrt{z}+\sqrt{x}}< \frac{\sqrt{z}+\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
Cộng vế với vế:
\(\Rightarrow VT< \frac{2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=2\) (đpcm)
Đặt \(\sqrt{x}=a\) , \(\sqrt{y}=b\) , \(\sqrt{z}=c\)
Suy ra \(P=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
\(=-\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Xét tử : \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)=a^2\left[-\left(a-b\right)-\left(c-a\right)\right]+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=\left(a-b\right)\left(c^2-a^2\right)+\left(c-a\right)\left(b^2-a^2\right)=\left(a-b\right)\left(c-a\right)\left(c+a\right)+\left(c-a\right)\left(b-a\right)\left(b+a\right)\)
\(=\left(a-b\right)\left(c-a\right)\left(c+a-a-b\right)=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)
Suy ra \(P=-\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)
Ta có: \(x^2\left(y+z\right)\ge x^2.2\sqrt{yz}=2\sqrt{x^4}.\sqrt{\frac{1}{x}}=2x\sqrt{x}\)(Áp dụng BĐT Cô - si cho 2 số dương y,z và sử dụng giả thiết xyz = 1)
Hoàn toàn tương tự: \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2\left(x+y\right)\ge2z\sqrt{z}\)
Do đó \(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
\(\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)
Đặt \(a=x\sqrt{x}+2y\sqrt{y}\), \(b=y\sqrt{y}+2z\sqrt{z}\), \(c=z\sqrt{z}+2x\sqrt{x}\)
Suy ra: \(x\sqrt{x}=\frac{4c+a-2b}{9}\), \(y\sqrt{y}=\frac{4a+b-2c}{9}\), \(z\sqrt{z}=\frac{4b+c-2a}{9}\)
Do đó \(P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{c}+\frac{4b+c-2a}{a}\right)\)
\(=\frac{2}{9}\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\)
\(\ge\frac{2}{9}\left[4.3\sqrt[3]{\frac{c}{b}.\frac{a}{c}.\frac{b}{a}}+3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}-6\right]\)(Áp dụng BĐT Cô - si cho 3 số dương)
\(=\frac{2}{9}\left[4.3+3-6\right]=2\)
Vậy \(P\ge2\)
Đẳng thức xảy ra khi x = y = z = 1