\(\sqrt{\frac{x}{y+z}}\)+\(\sqrt{\frac{y}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2018

Áp dụng bđt AM-GM:

\(\sqrt{\frac{x}{y+z}}=\frac{x}{\sqrt{x\left(y+z\right)}}\ge\frac{x}{\frac{x+y+z}{2}}=\frac{2x}{x+y+z}\)

Tương tự: \(\hept{\begin{cases}\frac{y}{z+x}\ge\frac{2y}{x+y+z}\\\frac{z}{x+y}\ge\frac{2z}{x+y+z}\end{cases}}\). Cộng theo vế: \(VT\ge2\)

Dấu "=" ko xảy ra nên VT>2

5 tháng 8 2017

b2 \(\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}=\sqrt{x}.\sqrt{1-\frac{1}{x}}+\sqrt{y}.\)\(\sqrt{y}.\sqrt{1-\frac{1}{y}}+\sqrt{z}.\sqrt{1-\frac{1}{z}}\)rồi dung bunhia là xong

5 tháng 8 2017

A= \(\frac{1}{a^3}\)\(\frac{1}{b^3}\)\(\frac{1}{c^3}\)\(\frac{ab^2}{c^3}\)\(\frac{bc^2}{a^3}\)\(\frac{ca^2}{b^3}\)

Svacxo:
3 cái đầu >= \(\frac{9}{a^3+b^3+c^3}\)

3 cái sau >= \(\frac{\left(\sqrt{a}b+\sqrt{c}b+\sqrt{a}c\right)^2}{a^3+b^3+c^3}\)

Cô-si: cái tử bỏ bình phương >= 3\(\sqrt{abc}\)

=> cái tử >= 9abc= 9 vì abc=1 
Còn lại tự làm

12 tháng 10 2016

mk hơi vội nên sai 1 số lỗi nhỏ bn tự sửa nhé

12 tháng 10 2016

\(A=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\)

Áp dụng Bđt MIncopxki ta có:

\(A\ge\sqrt{\left(x+y+\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}+\frac{80}{\left(x+y+z\right)^2}}\)

\(\ge\sqrt{2+80}=\sqrt{82}\)

Dấu = khi \(x=y=z=\frac{1}{3}\)

6 tháng 2 2017

Áp dụng BDT AM-GM ta có:\(VT\ge3\left(\frac{x}{y+z+1}+\frac{y}{x+z+1}+\frac{z}{x+y+1}\right)\)

\(\Rightarrow\frac{VT}{3}\ge\frac{x^2}{xy+xz+x}+\frac{y^2}{yz+yx+y}+\frac{z^2}{xz+zy+z}\)

\(\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+xy+z}\) (Cauchy-Schwarz)

Do \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)\(\Rightarrow\left(x+y+z\right)^2\le\left(x^2+y^2+z^2\right)^2\)

\(\Rightarrow x+y+z\le x^2+y^2+z^2\).Suy ra

\(2\left(xy+yz+xz\right)+x+y+z\le2\left(xy+yz+xz\right)+x^2+y^2+z^2=\left(x+y+z\right)^2\)

Suy ra \(\frac{VT}{3}\le\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\Rightarrow VT\ge3\) (điều phải chứng minh)

Dấu "=" xảy ra khi x=y=z=1

18 tháng 5 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{xy}{\sqrt{z+xy}}=\frac{xy}{\sqrt{z\left(x+y+z\right)+xy}}=\frac{xy}{\sqrt{xz+yz+z^2+xy}}\)

\(=\frac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\frac{1}{2}\left(\frac{xy}{x+z}+\frac{xy}{y+z}\right)\)

Tương tự cho 2 BĐT còn lại ta có:

\(\frac{yz}{\sqrt{x+yz}}\le\frac{1}{2}\left(\frac{yz}{x+y}+\frac{yz}{x+z}\right);\frac{xz}{\sqrt{y+xz}}\le\frac{1}{2}\left(\frac{xz}{y+z}+\frac{xz}{x+y}\right)\)

Cộng theo vế các BĐT trên ta có:

\(P\le\frac{1}{2}\left(\frac{xy+yz}{x+z}+\frac{yz+xz}{x+y}+\frac{xy+xz}{y+z}\right)\)

\(=\frac{1}{2}\left(\frac{y\left(x+z\right)}{x+z}+\frac{z\left(x+y\right)}{x+y}+\frac{x\left(y+z\right)}{y+z}\right)\)

\(=\frac{1}{2}\left(x+y+z\right)=\frac{1}{2}\left(x+y+z=1\right)\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

31 tháng 7 2017

tương tự Câu hỏi của Hoàng Gia Anh Vũ - Toán lớp 9 - Học toán với OnlineMath

4 tháng 8 2017

này trả lời tin nhắn tớ đi

4 tháng 8 2017

(x+y+z)^2/3>=(x^2+y^2+z^2+2xy+2yz+2zx)/3>=3(xy+yz+zx)/3=xy+yz+zx(do x^2+y^2+z^2>=xy+yz+zx)(1)

(xy+yz)/2>=y√xz;(yz+zx)/2>=z√xy;(zx+xy)/2>=x√yz(BĐT Cô-si)

Cộng theo vế >>>xy+yz+zx>=y√xz+z√xy+x√yz(2)

Từ(1),(2) >>>đpcm