K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2018

Đáp án C

Ta có:  9 ln 2 x + 4 ln 2 y = 12 ln x . ln y

⇔ 3 ln x 2 - 12 ln x . ln y + 2 ln y 2 = 0 ⇔ 3 ln x - 2 ln y 2 = 0

⇔ 3 ln x = 2 ln y ⇔ ln x 3 = ln y 2 ⇔ x 3 = y 2 .

14 tháng 9 2019


21 tháng 12 2019

Đáp án C

Ta có

Khi đó

Vậy giá trị nhỏ nhất của biểu thức P là  3 + 2 2

9 tháng 7 2018

26 tháng 1 2018

19 tháng 5 2017

10 tháng 7 2017

Đáp án B

Ta có: D = - 2 ; + ∞ và y ' = 1 x + 2 - 3 x + 2 2 = x - 1 x + 2 2 > 0 ⇔ x > 1  

Do đó hàm số đã cho đồng biến trên khoảng 1 ; + ∞ .

23 tháng 10 2017

Đáp án C

Đồ thị hàm số y = f'(x) không cắt trục hoành

Hay phương trình f'(x) = 0 vô nghiệm

22 tháng 5 2018

Chọn C.

y' = 1 – 1/e > 0 suy ra hàm đồng biến trên R

5 tháng 10 2015

ta có:

\(y'=\frac{\left(\frac{1-x^2}{1+x^2}\right)'}{\frac{1-x^2}{1+x^2}}=\frac{\frac{-2x.\left(1+x^2\right)-2x.\left(1-x^2\right)}{\left(1+x^2\right)^2}}{\frac{1-x^2}{1+x^2}}=\frac{\frac{-4x}{\left(1+x^2\right)^2}}{\frac{1-x^2}{1+x^2}}=\frac{-4x}{\left(1+x^2\right)\left(1-x^2\right)}=\frac{-4x}{1-x^4}\)

6 tháng 2 2019

Đáp án C

Phương pháp:

- Sử dụng tính đơn điệu của hàm số để giải phương trình, từ đó đánh giá giá trị lớn nhất của biểu thức.

Cách giải:

 

<=>  

 

 

  (2)

Đặt  

=> f(t) đồng biến trên (0;+∞) 

<=>

<=>

Khi đó, 

vì 

Vậy Pmax = 1 khi và chỉ khi