Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Ta có
Khi đó
Vậy giá trị nhỏ nhất của biểu thức P là 3 + 2 2
Đáp án A
Ta có: y ' = 1 − 1 x = 0 ⇔ x − 1 x = 0 ⇔ x = 1 . Ta có y 1 2 = 1 2 + ln 2 ; y 1 = 1 ; y e = e − 1
⇒ M a x y = e − 1 ; M i n y = 1
Đáp án C.
Ta có:
G T ⇔ 5 x + 2 y + x + 2 y − 3 − x − 2 y = 5 x y − 1 − 3 1 − x y + x y − 1.
Xét hàm số
f t = 5 t + t − 3 − t ⇒ f t = 5 t ln 5 + 1 + 3 − t ln 3 > 0 ∀ t ∈ ℝ
Do đó hàm số đồng biến trên ℝ suy ra f x + 2 y = f x y − 1 ⇔ x + 2 y = x y − 1
⇔ x = 2 y + 1 y − 1 ⇒ T = 2 y + 1 y − 1 + y . Do x > 0 ⇒ y > 1
Ta có: T = 2 + y + 3 y − 1 = 3 + y − 1 + 3 y − 1 ≥ 3 + 2 3 .
Đáp án D
Phương pháp giải:
Sử dụng phương pháp hàm đặc trưng để từ giả thiết suy ra mối liên hệ giữa hai biến, sau đó sử dụng phương pháp thể và khảo sát hàm số tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức
Đáp án B
Ta có ln x y = ln x + ln y ≥ ln x 2 + y ⇔ x y ≥ x 2 + y ⇔ y x − 1 ≥ x 2
Vì x = 1 không thỏa và y > 0 ⇒ x > 1 ⇒ P = x y ≥ x 2 x − 1 + x = f x
Xét hàm số f x = x 2 x − 1 + x với x > 1
⇒ f ' x = x 2 − 2 x x − 1 2 + x = 2 x 2 − 4 x + 1 x − 1 2 → f ' x = 0 ⇔ x = 2 + 2 2 vì x > 1
Dựa vào bảng biến thiên của hàm số f x suy ra ⇒ M i n P = M in x > 1 f x = f 1 = 3 + 2 2