Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x-1\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x-1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
b, \(2x-1\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
2x-1 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 1 | 0 | loại | loại | loại | loại |
c, \(\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\Rightarrow x-1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
x-1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
x | 2 | 0 | 3 | -1 | 6 | -4 | 11 | -9 |
d, \(\dfrac{4\left(x-3\right)+3}{-\left(x-3\right)}=-4-\dfrac{3}{x+3}\Rightarrow x+3\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x+3 | 1 | -1 | 3 | -3 |
x | -2 | -4 | 0 | -6 |
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
\(A=\frac{3}{x-1}\)
=> x - 1 \(\in\)Ư(3) = {\(\pm1;\pm3\)}
x -1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
b) \(B=\frac{x+2}{x+1}=\frac{x+1+1}{x+1}=1+\frac{1}{x+1}\)
=> x + 1 \(\in\)Ư(1) = { \(\pm\)1}
=> x = 0 hoặc x = -2
c) \(C=\frac{5}{2x+7}\)
=> 2x + 7 \(\in\)Ư(5) = { \(\pm1;\pm5\)}
=> 2x \(\in\){-6 ; -8 ; -2 ; -12}
=> x \(\in\){ -3; -4 ; -1; -6}
d) \(D=\frac{11x-8}{x+2}=\frac{11\left(x+2\right)-30}{x+2}=11-\frac{30}{x+2}\)
=> 30 \(⋮\)x + 2 => x + 2 thuộc Ư(30)
Tự xét
Bg
a) Ta có: A = \(\frac{3}{x-1}\) (x thuộc Z)
Để A nguyên thì 3 \(⋮\)x - 1
=> x - 1 thuộc Ư(3)
Ư(3) = {1; -1; 3; -3}
=> x - 1 = 1 hay -1 hay 3 hay -3
=> x = 1 + 1 hay -1 + 1 hay 3 + 1 hay -3 + 1
=> x = {2; 0; 4; -2}
b) Ta có: B = \(\frac{x+2}{x+1}\) (x thuộc Z)
Để B nguyên thì x + 2 \(⋮\)x + 1
=> x + 2 - (x + 1) \(⋮\)x + 1
=> x + 2 - x - 1 \(⋮\)x + 1
=> x - x + (2 - 1) \(⋮\)x + 1
=> 1 \(⋮\)x + 1
=> x + 1 thuộc Ư(1)
Ư(1) = {1; -1}
=> x + 1 = 1 hay -1
=> x = 1 - 1 hay -1 - 1
=> x = {0; -2}
c) Ta có: C = \(\frac{5}{2x+7}\) (x thuộc Z)
Để C nguyên thì 5 \(⋮\)2x + 7
=> 2x + 7 thuộc Ư(5)
Ư(5) = {1; - 1; 5; -5}
=> 2x + 7 = 1 hay -1 hay 5 hay -5
......... (Tự làm)
=> x = {-3; -4; -1; -6}
d) Ta có: D = \(\frac{11x-8}{x+2}\) (x thuộc Z)
Để D nguyên thì 11x - 8 \(⋮\)x + 2
=> 11x - 8 - [11(x + 2)] \(⋮\)x + 2
=> 11x - 8 - 11x - 11.2 \(⋮\)x + 2
=> 11x - 11x - (22 + 8) \(⋮\)x + 2
=> 30 \(⋮\)x + 2
=> x + 2 thuộc Ư(30)
Ư(30) = {...}
.... (Tự làm)
=> x = {…}
a)để A có giá trị nguyên
=>-3 chia hết 2x-1
=>2x-1\(\in\){-3,-1,1,3}
=>2x-1\(\in\){-7;-3;1;5}
b)để B có giá trị nguyên
=>4x+5 chia hết 2x-1
<=>[2(2x-1)+7] chia hết 2x-1
=>2x-1\(\in\){1,-1,7,-7}
=>x\(\in\){1;-3;13;-15}
c tương tự
Min A=12\(\Leftrightarrow\)\(\left(x-1\right)^2=0\Leftrightarrow x=1\)
C. {- 5; - 3}.