K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2019

\(C=\frac{x+5}{2x+\left(x-2y\right)}+\frac{y-5}{2y-\left(x-2y\right)}\)

\(=\frac{x+5}{2x+10}+\frac{y-5}{2y-10}=\frac{x+5}{2\left(x+5\right)}+\frac{y-5}{2\left(y-5\right)}=\frac{1}{2}+\frac{1}{2}=1\left(x\ne-5,y\ne5\right)\)

4 tháng 2 2019

Trả lời :

Ta có :

C = \(\frac{x+5}{3x-2y}+\frac{y-5}{4y-x}\)

C = \(\frac{2\left(x+5\right)}{2\left(3x-2y\right)}+\frac{2\left(y-5\right)}{2\left(4y-x\right)}\)

C = \(\frac{2x+10}{6x-4y}+\frac{2y-10}{8y-2x}\)

Thay x - 2y = 10 . Ta được :

C = \(\frac{2x+x-2y}{6x-4y}+\frac{2y-x-2y}{8y-2x}\)

C = \(\frac{x\left(2+1\right)-2y}{6x-4y}+\frac{y\left(2+2\right)-x}{8y-2x}\)

C = \(\frac{3x-2y}{6x-4y}+\frac{4y-x}{8y-2x}\)

C = \(\frac{1}{2}+\frac{1}{2}\)

C = \(1\)

Vậy C = 1

Hok tốt

11 tháng 7 2019

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chát dãy tỉ số = nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)

\(\frac{y}{15}=2\Rightarrow y=30\)

\(\frac{z}{21}=3\Rightarrow z=63\)

11 tháng 7 2019

b, Tự làm

c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)

\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)

\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)

\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)

Vậy \((x,y)\in(6,15);(-6,-15)\)

18 tháng 10 2018

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

           \(\frac{3x+2}{4}=\frac{2y+2}{5}=\frac{3x+2y+4}{4,5x}=\frac{3x+2+2y+2}{4+5}=\frac{3x+2y+4}{9}\)

\(\Rightarrow4,5x=9\Rightarrow x=2\)

Mà \(\frac{3x+2}{4}=\frac{2y+2}{5}\)

\(\Rightarrow\frac{3.2+2}{4}=\frac{2y+2}{5}\Rightarrow\frac{2y+2}{5}=2\Rightarrow2y+2=10\Rightarrow y=4\)

10 tháng 9 2016

Ta có: \(\frac{x+2y}{3x+4y}=\frac{2}{5}\)

=> (x + 2y).5 = 2.(3x + 4y)

=> 5x + 10y = 6x + 8y

=> 10y - 8y = 6x - 5x

=> 2y = x

=> \(\frac{2y}{x}=1\)

Vậy \(\frac{2y}{x}=1\)

NV
20 tháng 1

Áp dụng t/c dãy tỉ số bằng nhau:

a.

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-21}{7}=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-3\right)=-6\\y=5.\left(-3\right)=-15\end{matrix}\right.\)

b.

\(5x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x-y}{3-5}=\dfrac{10}{-2}=-5\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-5\right)=-15\\y=5.\left(-5\right)=-25\end{matrix}\right.\)

c.

\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x}{15}=\dfrac{-2y}{-4}=\dfrac{3x-2y}{15-4}=\dfrac{44}{11}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.4=20\\y=2.4=8\end{matrix}\right.\)

d.

\(\dfrac{x}{3}=\dfrac{y}{16}=\dfrac{3x}{9}=\dfrac{-y}{-16}=\dfrac{3x-y}{9-16}=\dfrac{35}{-7}=-5\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-5\right)=-15\\y=16.\left(-5\right)=-80\end{matrix}\right.\)

23 tháng 7 2018

a, Vì \(\left|3x-2y\right|\ge0;\left|3y-4z\right|\ge0\Rightarrow\left|3x-2y\right|+\left|3y-4z\right|\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-2y=0\\3y-4z=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x=2y\\3y=4z\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{3}\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{9}\end{cases}\Leftrightarrow}\frac{x}{8}=\frac{y}{12}=\frac{z}{9}}\)

\(\Leftrightarrow\frac{x}{8}=\frac{2y}{24}=\frac{3z}{27}=\frac{x-2y+3z}{8-24+27}=\frac{5}{11}\)

từ đây tìm x,y,z

b,Ta có: \(\frac{2x+3}{2}=\frac{3x-6}{5}\Rightarrow5\left(2x+3\right)=2\left(3x-6\right)\Rightarrow10x+15=6x-12\Rightarrow4x=-27\Rightarrow x=\frac{-27}{4}\)

Thay x=-27/4 vào \(\frac{3x-6}{5}=\frac{3x+3y+1}{3x}\), ta được:

\(\frac{3\cdot\left(\frac{-27}{4}\right)-6}{5}=\frac{3.\left(\frac{-27}{4}\right)+3y+1}{3.\left(\frac{-27}{4}\right)}\)

\(\Rightarrow\frac{-21}{4}=\frac{\frac{-77}{4}+3y}{\frac{-81}{4}}\Rightarrow\frac{-77}{4}+3y=\frac{1701}{16}\Rightarrow3y=\frac{2009}{16}\Rightarrow y=\frac{2009}{48}\)

Vậy x=-27/4,y=2009/48

17 tháng 12 2017

theo TCDTSBN ta có :

\(\frac{x}{5}=\frac{y}{7}=\frac{3x}{3.5}=\frac{2y}{2.7}=\frac{3x-2y}{15-14}=\frac{-21}{1}=-21\)

\(\frac{x}{5}=-21\Rightarrow x=-21.5=-105\)

\(\frac{y}{7}=-21\Rightarrow y=-21.7=-147\)

Vậy ...

Bài 1: Thu gọn a) \(\frac{1}{5}x^4y^3-3x^4y^3\) b) \(5x^2y^5-\frac{1}{4}x^2y^5\) c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\) d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\) e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\) f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\) g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\) h)...
Đọc tiếp

Bài 1: Thu gọn

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)

d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)

e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)

f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)

g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)

h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)

i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)

k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)

n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)

m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)

p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)

1
26 tháng 7 2019

Bài 1:

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

= \(\left(\frac{1}{5}-3\right)x^4y^3\)

= \(-\frac{14}{5}x^4y^3.\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

= \(\left(5-\frac{1}{4}\right)x^2y^5\)

= \(\frac{19}{4}x^2y^5.\)

Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.

Chúc bạn học tốt!

29 tháng 7 2019

cảm ơn nha

chúc bạn học tốt