Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{3x-2y}{4}=\frac{4y-3z}{2}=\frac{2z-4x}{3}\)
\(\Leftrightarrow\frac{12x-8y}{16}=\frac{8y-6z}{4}=\frac{6z-12x}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{12x-8y}{16}=\frac{8y-6z}{4}=\frac{6z-12x}{9}=\frac{12x-8y+8y-6z+6z-12x}{16+4+9}=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{3x-2y}{4}=0\\\frac{4y-3z}{2}=0\\\frac{2z-4x}{3}=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}3x=2y\\4y=3z\\2z=4x\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{4}\\\frac{x}{2}=\frac{z}{4}\end{cases}}\) \(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(\Leftrightarrow\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}=\frac{x-2y+3z}{2-6+12}=\frac{8}{8}=1\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=1\\\frac{y}{3}=1\\\frac{z}{4}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\\z=4\end{cases}}\)
Vậy : \(\left(x,y,z\right)=\left(2,3,4\right)\)
x^2-4xy+4y^2 = 0
<=> (x-2y)^2 = 0
<=> x-2y = 0
<=> x=2y
Thay x=2y vào thì :
A = 6y-2y/4y+5y = 4y/9y = 4/9
Tk mk nha
Ta có: \(x^2-4xy+4y^2=0\)
\(\Leftrightarrow\left(x-2y\right)^2=0\)
\(\Leftrightarrow x=2y\)
Thế vào A, ta được: \(\frac{3.2y-2y}{2.2y+5y}=\frac{6y-2y}{4y+5y}=\frac{4y}{9y}=\frac{4}{9}\)
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
a, Vì \(\left|3x-2y\right|\ge0;\left|3y-4z\right|\ge0\Rightarrow\left|3x-2y\right|+\left|3y-4z\right|\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-2y=0\\3y-4z=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x=2y\\3y=4z\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{3}\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{9}\end{cases}\Leftrightarrow}\frac{x}{8}=\frac{y}{12}=\frac{z}{9}}\)
\(\Leftrightarrow\frac{x}{8}=\frac{2y}{24}=\frac{3z}{27}=\frac{x-2y+3z}{8-24+27}=\frac{5}{11}\)
từ đây tìm x,y,z
b,Ta có: \(\frac{2x+3}{2}=\frac{3x-6}{5}\Rightarrow5\left(2x+3\right)=2\left(3x-6\right)\Rightarrow10x+15=6x-12\Rightarrow4x=-27\Rightarrow x=\frac{-27}{4}\)
Thay x=-27/4 vào \(\frac{3x-6}{5}=\frac{3x+3y+1}{3x}\), ta được:
\(\frac{3\cdot\left(\frac{-27}{4}\right)-6}{5}=\frac{3.\left(\frac{-27}{4}\right)+3y+1}{3.\left(\frac{-27}{4}\right)}\)
\(\Rightarrow\frac{-21}{4}=\frac{\frac{-77}{4}+3y}{\frac{-81}{4}}\Rightarrow\frac{-77}{4}+3y=\frac{1701}{16}\Rightarrow3y=\frac{2009}{16}\Rightarrow y=\frac{2009}{48}\)
Vậy x=-27/4,y=2009/48
Câu 1 : \(\frac{x}{2}=\frac{2y}{5}=\frac{4z}{7}\)\(\Rightarrow\)\(\frac{1}{4}.\frac{x}{2}=\frac{1}{4}.\frac{2y}{5}=\frac{1}{4}.\frac{4z}{7}\)\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{10}=\frac{z}{7}\) \(\Rightarrow\)\(\frac{3x}{24}=\frac{5y}{50}=\frac{7z}{49}=\frac{3x+5y+7z}{24+50+49}=\frac{123}{123}=1\)
\(\frac{3x}{24}=1\Rightarrow3x=24\Rightarrow x=8\)
\(\frac{5y}{50}=1\Rightarrow5y=50\Rightarrow y=10\)
\(\frac{7z}{49}=1\Rightarrow7z=49\Rightarrow z=7\)
Vậy x,y,z lần lượt là 8,10,7
Ta có: \(\frac{x+2y}{3x+4y}=\frac{2}{5}\)
=> (x + 2y).5 = 2.(3x + 4y)
=> 5x + 10y = 6x + 8y
=> 10y - 8y = 6x - 5x
=> 2y = x
=> \(\frac{2y}{x}=1\)
Vậy \(\frac{2y}{x}=1\)