Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+\frac{1}{x^2}=7\Leftrightarrow x^2+2+\frac{1}{x^2}=9\Leftrightarrow\left(x+\frac{1}{x}\right)^2=3^2.\)Do x > 0 nên \(x+\frac{1}{x}\)>0 và \(x+\frac{1}{x}=3\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^3=27\Rightarrow x^3+\frac{1}{x^3}+3\cdot x\cdot\frac{1}{x}\left(x+\frac{1}{x}\right)=27\Rightarrow x^3+\frac{1}{x^3}+3\cdot3=27\Rightarrow x^3+\frac{1}{x^3}=18\)
\(\Rightarrow\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=7\cdot18\Rightarrow x^5+\frac{1}{x^5}+x+\frac{1}{x}=126\Rightarrow x^5+\frac{1}{x^5}+3=126\Rightarrow x^5+\frac{1}{x^5}=123.\)
Vậy \(x^5+\frac{1}{x^5}\)là 1 số nguyên và bằng: 123
a, Để P xác định <=> \(\hept{\begin{cases}x+3\ne0\\x^2+x-6\ne0\\2-x\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-3\\x^2-2x+3x-6\ne\\x\ne2\end{cases}0\Rightarrow\hept{\begin{cases}x\ne-3\\\left(x-2\right)\\x\ne2\end{cases}}}\left(x+3\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)
Rút gọn
\(P=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
\(=\frac{x+2}{x+3}-\frac{5}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x-2}\)
\(=\frac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+3x-12}{\left(x+3\right)\left(x+2\right)}=\frac{x\left(x-4\right)+3\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)
b,Để \(P=\frac{-3}{4}\)
Thì \(\frac{x-4}{x-2}=\frac{-3}{4}\)
\(\Rightarrow4x-16=-3x+6\)
\(\Rightarrow4x-16-3x+6=0\)
\(\Rightarrow x-10=0\)
\(\Rightarrow x=10\left(t/m\right)\)
Vậy \(P=\frac{-3}{4}\)khi x=10
c,Để \(P\inℤ\Rightarrow x-4⋮x-2\)
mà \(x-4=\left(x-2\right)-2\)
Vì \(x-2⋮\left(x-2\right)\Rightarrow-2⋮\left(x-2\right)\)
\(\Rightarrow x-2\inƯ\left(-2\right)=\left\{\pm1,\pm2\right\}\)
\(\Rightarrow x\in\left\{3,1,4,0\right\}\left(t/m\right)\)
Vậy ......................
d,\(x^2-9=0\)
\(\Rightarrow x^2=9\)
\(\Rightarrow x=\pm3\)
TH1
Thay x= 3 ta có
\(P=\frac{3-4}{3-2}\)
\(=\frac{-1}{1}=-1\)
TH2
\(x=-3\)
Vậy \(P=-1\Leftrightarrow x=3\)
e,Để P >0 khi
\(\orbr{\begin{cases}\hept{\begin{cases}x-4>0\\x-2>0\end{cases}}\\\hept{\begin{cases}x-4< 0\\x-2< 0\end{cases}}\end{cases}}\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x>4\\x>2\end{cases}}\\\hept{\begin{cases}x< 4\\x< 2\end{cases}}\end{cases}}\Rightarrow\orbr{\begin{cases}x>4\\x< 2\end{cases}}\)
Vậy \(P>0\Leftrightarrow\orbr{\begin{cases}x>4\\x< 2\&x\ne-3\end{cases}}\)
\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}+\frac{40}{4-x^2}\)
a) ĐKXĐ : \(x\ne\pm2\)
\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}+\frac{40}{4-x^2}\)
\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}-\frac{40}{x^2-4}\)
\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}-\frac{40}{\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{5x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{\left(3x-23\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{40}{\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{5x^2-10x}{\left(x+2\right)\left(x-2\right)}-\frac{\left(3x^2-17x-46\right)}{\left(x+2\right)\left(x-2\right)}-\frac{40}{\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{5x^2-10x-\left(3x^2-17x-46\right)-40}{\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{5x^2-10x-3x^2+17x+46-40}{\left(x+2\right)\left(x-2\right)}\)
\(B=\frac{2x^2+7x+6}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x+2\right)\left(2x+3\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2x+3}{x-2}\)
b) x2 - 1 = 0 <=> x2 = 1 <=> x = ±1
Với x = 1
\(B=\frac{2\cdot1+3}{1-2}=-5\)
Với x = -1
\(B=\frac{2\cdot\left(-1\right)+3}{\left(-1\right)-2}=-\frac{1}{3}\)
Cho x,y,z>0; \(x^2+y^2+z^3=\frac{5}{3}\)
CMR: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}\le\frac{1}{xyz}\)
a)\(B=\left(\frac{x-2}{x^2+2x}+\frac{1}{x+2}\right).\frac{x+1}{x-1}=\left(\frac{x^2-2}{x^2+2x}+\frac{x}{x^2+2x}\right).\frac{x+1}{x-1}=\frac{x^2+x-2}{x^2+2x}.\frac{x+1}{x-1}\)
\(=\frac{x^2-x+2x-2}{x\left(x+2\right)}.\frac{x+1}{x-1}=\frac{x\left(x-1\right)+2\left(x-1\right)}{x\left(x+2\right)}.\frac{x+1}{x-1}=\frac{\left(x-1\right)\left(x+2\right)}{x\left(x+2\right)}.\frac{x+1}{x-1}=\frac{x+1}{x}\)
b)\(2B=2x+5\Leftrightarrow2.\frac{x+1}{x}=2x+5\Leftrightarrow\frac{2x+2}{x}=2x+5\Leftrightarrow2x+2=2x^2+5x\)
\(\Leftrightarrow0=2x^2+3x-2\Leftrightarrow2x^2+4x-x-2=0\Leftrightarrow2x\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+2\right)=0\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-2\end{cases}}\)
Ta có : \(x^2+\dfrac{1}{x^2}=7\)
\(\Leftrightarrow x^2+\dfrac{1}{x^2}+2=9\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2=9\)
\(\Leftrightarrow x+\dfrac{1}{x}=3\left(x>0\right)\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^3=27\)
\(\Leftrightarrow x^3+3x^2.\dfrac{1}{x}+3x.\dfrac{1}{x^2}+\dfrac{1}{x^3}=27\)
\(\Leftrightarrow x^3+3x+\dfrac{3}{x}+\dfrac{1}{x^3}=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}+3\left(x+\dfrac{1}{x}\right)=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}+3.3=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}=18\)
Lại có : \(\left(x^2+\dfrac{1}{x^2}\right)\left(x^3+\dfrac{1}{x^3}\right)\)
\(=x^5+x+\dfrac{1}{x}+\dfrac{1}{x^5}\)
\(=x^5+\dfrac{1}{x^5}+3\left(1\right)\)
Mặt khác : \(\left(x^2+\dfrac{1}{x^2}\right)\left(x^3+\dfrac{1}{x^3}\right)=7.18=126\left(2\right)\)
Từ ( 1 ) ; ( 2 ) \(\Rightarrow x^5+\dfrac{1}{x^5}+3=126\)
\(\Rightarrow x^5+\dfrac{1}{x^5}=123\in Z\)
\(\left(đpcm\right)\)