\(\widehat{xOy}\).Lấy \(A\in Ox,B\in Oy\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

a, Xét △OAC và △OBC

Có: OA = OB (gt)

   ^AOC = ^BOC (gt)

   OC là cạnh chung

=> △OAC = △OBC (c.g.c)

=> ^OAC = ^OBC (2 góc tương ứng)     (1)

Ta có: ^OAC + ^CAx = 180o (2 góc kề bù)  (2)  và  ^OBC + ^CBy = 180o (2 góc kề bù)    (3)

Từ (1) ; (2) ; (3)  => ^CAx = ^CBy

b, Xét △MOA và △MOB

Có: OA = OB (gt)

   ^MOA = ^MOB (gt)

   OM là cạnh chung

=> △MOA = △MOB (c.g.c)

=> MA = MB (2 cạnh tương ứng)

=> M là trung điểm của AB.

c, +) Cách 1: Vì OA = OB (gt) => O thuộc đường trung trực AB

Vì AC = BC (△OAC = △OBC)  => C thuộc đường trung trực AB

=> OC là đường trung trực AB

=> OC ⊥ AB  => OM ⊥ AB

+) Cách 2:  △MOA = △MOB (cmt)

=> ^OMA = ^OMB (2 góc tương ứng)

Mà ^OMA + ^OMB = 180o (2 góc kề bù)

=> ^OMA = ^OMB = 180o : 2 = 90o 

=> OM ⊥ AB

28 tháng 2 2019

o x y z A B C D M

28 tháng 2 2019

bÂY GIỜ CÂU 1 MÌNH ĐÃ LÀM ĐC NHƯ THẾ NÀY RỒI

Ta có hình vẽ sau:

O x y M

a) Xét \(\Delta OMB\)và \(\Delta OMA:\)

OM: cạnh chung

OB=OA(gt)

\(\widehat{OBM}=\widehat{OAM}=90^o\)

\(\Rightarrow\Delta OMB=\Delta OMA\left(ch-cgv\right)\)

=> MB=MA( 2 cạnh tương ứng)

=> Đpcm

b) Ta có: \(\Delta OMB=\Delta OMA\)(cm câu a)

=> \(\widehat{BOM}=\widehat{AOM}\)(2 góc tương ứng)

=> OM là tia phân giác của \(\widehat{xOy}\)

14 tháng 12 2019

!

14 tháng 12 2019

b) Theo câu a) ta có \(\Delta QOM=\Delta HOM.\)

=> \(\widehat{QMO}=\widehat{HMO}\) (2 góc tương ứng).

Hay \(\widehat{QMG}=\widehat{HMG}.\)