\(\widehat{xOy}=120^o\) Vẽ tia phân giác Oz của góc xOy . Trên tia Oz lấy điểm A từ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔOBA vuông tại B và ΔOCA vuông tại C có

OA chung

\(\widehat{BOA}=\widehat{COA}\)

Do đo:ΔOBA=ΔOCA

Suy ra: AB=AC
hay ΔABC cân tại A

Xét tứ giác OBAC có \(\widehat{OBA}+\widehat{OCA}+\widehat{COB}+\widehat{CAB}=360^0\)

=>\(\widehat{CAB}=360^0-90^0-90^0-120^0=60^0\)

=>ΔBAC đều

=>\(\widehat{ABI}=60^0\)

18 tháng 12 2018

http://share.miniworldgame.com:4000/share/?uin=1007581345

28 tháng 2 2019

o x y z A B C D M

28 tháng 2 2019

bÂY GIỜ CÂU 1 MÌNH ĐÃ LÀM ĐC NHƯ THẾ NÀY RỒI

12 tháng 12 2019

a) 

 Xét \(\Delta\)OAC và \(\Delta\)OBC có:

^CAO  = ^CBO ( = 90\(^o\))

OC chung

^AOC = ^BOC ( OC là phân giác ^xOy)

=>  \(\Delta\)OAC = \(\Delta\)OBC ( cạnh huyền - góc nhọn) => OA = OB 

b)  \(\Delta\)OAC =  \(\Delta\)OBC => CA = CB ; ^BCO = ^ACO

Xét  \(\Delta\)IAC và \(\Delta\)I BC có: CA = CB ; ^BCI = ^ACI ( vì ^BCO = ^ACO ) ; CI chung

=> \(\Delta\)IAC = \(\Delta\)IBC  ( c.g.c) (1)

=> IA = IB => I là trung điểm AB  (2)

c)  từ (1) => ^AIC = ^BIC  mà ^AIC + ^BIC = 180\(^o\)

=> ^AIC = ^BIC = \(90^o\)

=> CI vuông góc AB

=> CO vuông goác AB tại I  (3)

Từ (2) ; ( 3) => CO là đường trung trực của đoạn thẳng AD.

30 tháng 5 2018

Bài giải

1 2 H A C x z y

a) \(\Delta AOC=\Delta BOC\left(c-g-c\right)\)\(\Rightarrow AC=BC\)

và \(\widehat{OAC}=\widehat{OBC}\)\(\widehat{OAC}+\widehat{CAx}=180^o\),do đó \(\widehat{xAC}=\widehat{yBC}\) 

b) Gọi giao điểm của AB với tia Oz là H,ta có :

\(\Delta OHA=\Delta OHB\left(c-g-c\right)\),do đó \(\widehat{AHO}=\widehat{OHB}\)mà 

\(\Delta OHA=\Delta OHB=90^o\)

\(\Rightarrow\)\(AB\perp Oz\)

P/s Hình hơn xấu :)

6 tháng 3 2020

O A D x C I z B E y

Xét tam giác AOC và tam giác BOC

có OC chung

góc BOC= góc AOC (GT)

góc CBO = góc CAO = 900

suy ra tam giác AOC = tam giác BOC ( cạnh huyền- góc nhọn)

suy ra AC=BC ( hai cạnh tương ứng)

b) Xét tam giác BCE và tam giác ACD

có góc EBC = góc DAC = 900

AC=BC ( CMT)

góc BCE = góc ACD ( đối đỉnh)

suy ra am giác BCE =tam giác ACD (g.c.g)

suy ra CE=CD (hai cạnh tương ứng)

suy ra tam giác ECD cân tại C

c) 

14 tháng 12 2019

Hình bạn tự vẽ nha!

a) Vì \(Oz\) là tia phân giác của \(\widehat{xOy}\left(gt\right)\)

\(A\in Oz\left(gt\right)\)

=> \(OA\) là tia phân giác của \(\widehat{xOy}.\)

Hay \(OA\) là tia phân giác của \(\widehat{BOC}.\)

Xét 2 \(\Delta\) vuông \(ABO\)\(ACO\) có:

\(\widehat{ABO}=\widehat{ACO}=90^0\left(gt\right)\)

Cạnh AO chung

\(\widehat{BOA}=\widehat{COA}\) (vì \(OA\) là tia phân giác của \(\widehat{BOC}\))

=> \(\Delta ABO=\Delta ACO\) (cạnh huyền - góc nhọn).

b) Theo câu a) ta có \(\Delta ABO=\Delta ACO.\)

=> \(BO=CO\) (2 cạnh tương ứng).

Xét 2 \(\Delta\) vuông \(BOI\)\(COI\) có:

\(\widehat{OBI}=\widehat{OCI}=90^0\)

\(BO=CO\left(cmt\right)\)

Cạnh OI chung

=> \(\Delta BOI=\Delta COI\) (cạnh huyền - cạnh góc vuông).

=> \(IB=IC\) (2 cạnh tương ứng).

Chúc bạn học tốt!