\(\frac{a}{b}=\frac{c}{d}\)

chứng tỏ :

a,...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2017

a. Từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

Ta có: \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\times\frac{b}{d}=\left(\frac{a-c}{b-d}\right)\left(\frac{a-c}{b-d}\right)=\left(\frac{a-c}{b-d}\right)^2\)

\(\Rightarrow\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\)(ĐPCM)

13 tháng 8 2017

a)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\) Đặt \(\frac{a}{c}=\frac{b}{d}=k\)

Áp dụng TCDSBN ta có :

\(k=\frac{a-b}{c-d}\)\(\Rightarrow k^2=\left(\frac{a-b}{c-d}\right)^2\)(1)

Ta lại có : \(k=\frac{a}{c};k=\frac{b}{d}\Rightarrow k^2=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)(2)

Từ (1) ; (2) \(\Rightarrow\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\)(đpcm)

b ) Đề sai : điều cần cm là \(\frac{2017a-2018b}{2017c+2018d}=\frac{2017c-2018d}{2017a+2018b}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2007a}{2007c}=\frac{2008b}{2008c}=\frac{2007a+2008b}{2007c+2008d}=\frac{2007a-2008b}{2007c-2008d}\)

\(\Rightarrow\left(2007a+2008b\right)\left(2007c-200d\right)=\left(2007a-2008b\right)\left(2007c+2008d\right)\)

\(\Rightarrow\frac{2017a-2018b}{2017c+2018d}=\frac{2017c-2018d}{2017a+2018b}\)(đpcm)

31 tháng 10 2016

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\left(1\right)\)

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)

31 tháng 10 2016

đặt a/b = c/d = k (k thuộc N) 

=> a = bk

c = dk

thay a và c vào 2 phân số cần so sánh thì = nhau

7 tháng 8 2017

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018b}{2018d}=\frac{2018a}{2018c}=\frac{2019b}{2019d}\)

Áp dụng tính chất dãy tỉ số bằng nhau: 

\(\frac{2017a}{2017c}=\frac{2018b}{2018d}=\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2017a-2018b}{2017c-2018d}=\frac{2018a+2019b}{2018c+2019d}\)

<=>\(\left(2017a-2018b\right)\left(2018c+2019d\right)=\left(2018a+2019b\right)\left(2017c-2018d\right)\)

<=>\(\frac{2017a-2018b}{2018a+2019b}=\frac{2017c-2017d}{2018x+2019d}\)(đpcm)

8 tháng 8 2017

nhật gà

6 tháng 10 2018

ĐK: \(\hept{\begin{cases}b\ne0\\d\ne0\end{cases}}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có:

\(\frac{2017a+2018b}{2018a-2019b}=\frac{2017bk+2018b}{2018bk-2019b}=\frac{b\left(2017k+2018\right)}{b\left(2018k-2019\right)}=\frac{2017k+2018}{2018k-2019}\) (1)

\(\frac{2017c+2018d}{2018c-2019d}=\frac{2017dk+2018d}{2018dk-2019d}=\frac{d\left(2017k+2018\right)}{d\left(2018k-2019\right)}=\frac{2017k+2018}{2018k-2019}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{2017a+2018b}{2018a-2019b}=\frac{2017c+2018d}{2018c-2019d}\)

6 tháng 10 2018

\(\frac{a}{b}=\frac{c}{d}=>ad=bc=>\frac{a}{c}=\frac{b}{d}\)

\(\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018b}{2018c}=\frac{2019a}{2019c}=\frac{2019b}{2019c}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018b}{2018c}=\frac{2019a}{2019c}=\frac{2019b}{2019c}=\frac{2017a+2018b}{2017c+2018d}=\frac{2018a-2019c}{2018c-2019d}\)

\(=>2017a+2018b.\left(2018c-2019d\right)=2017c+2018d.\left(2018a-2019b\right)\)

\(\frac{2017a+2018b}{2018b-2019b}=\frac{2017c+2018d}{2018c-2019d}\)

2 tháng 7 2015

Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)

a)Áp dụng t/c của dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

b)\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}\)

Áp dụng t/c của dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

2 tháng 7 2015

a) Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

 => \(\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2\) =>  \(\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

 Áp dụng t/c dãy tỉ số = nhau được: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

 Mặt khác, \(\frac{a^2}{c^2}=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)

 Vậy \(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\left(=\left(\frac{a}{c}\right)^2\right)\)

b) \(\frac{a}{c}=\frac{b}{d}\)(câu a) => \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\) (t/c dãy tỉ số = nhau)

=> \(\left(\frac{a}{c}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

 Mặt khác, \(\left(\frac{a}{c}\right)^2=\frac{ab}{cd}\)(câu a) nên \(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a}{c}\right)^2\)