Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{c}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)
2, a, Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{ab}{cd}\)
\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}\Rightarrow\frac{ab}{cd}=\frac{b^2}{d^2}\)
\(\Rightarrow\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)
b, Ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a-b}{c-d}\cdot\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Giải:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\)
a, Ta có: \(k^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\) (1)
\(k^2=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
b, Ta có: \(k=\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow k^2=\left(\frac{a-b}{c-d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) (1)
\(k^2=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
a)Thay vào \(\frac{a^2-b^2}{c^2-d^2}\) ta được:
\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}\Rightarrow\frac{b^2k^2-b^2}{d^2k^2-d^2}\Rightarrow\frac{b^2}{d^2}\Rightarrow\frac{b.b}{d.d}\left(1\right)\)
Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow a=b;c=d\left(2\right)\)
Từ (1) và (2) suy ra:\(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)
\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2=\frac{ab}{cd}\)
Vậy \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)và \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
a/b=c/d
=>a/c=b/d=a+b/c+d
=>a/b.c/d=(a+b)^2/(c+d)^2
=>ab/cd=(a+b)^2/(c+d)^2
Vay......
a/b=c/d
=> a/c=b/d=a+b/c+d
=> a/b.c/d=(a+b)^2/(c+d)^2
=> ab/cd=(a+b)^2/(c+d)^2
# Hok_tốt nha
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\left(đpcm\right)\)
\(\frac{a}{b}\) =\(\frac{c}{d}\) =>\(\frac{a}{c}\) =\(\frac{b}{d}\) =\(\frac{a-b}{c-d}\) =>\(\frac{ab}{cd}\) = \(\frac{a}{c}\) x\(\frac{b}{d}\) = \(\frac{a-b}{c-d}\) x \(\frac{a-b}{c-d}\) = \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Còn với\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) thì bạn chỉ cần thay dấu trừ thành dấu công là được
Chúc bạn học tốt
Cho \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=b.k;c=d.k\)
Vế trái:
\(\frac{a}{b}=\frac{c}{d}=\frac{b.k.b}{d.k.d}=\frac{b^2}{d^2}\)(1)
Vế phải:
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right).2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2) ta có:
\(\frac{ab}{c\text{d}}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(đpcm)
ta có \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+d}\\\Rightarrow\frac{a}{c}.\frac{a}{c}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\\ \Rightarrow\frac{a}{c}.\frac{b}{d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}hay\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2} \)
a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{ab}{cd}=\frac{a.a}{c.c}=\frac{b.b}{c.d}=\frac{a^2-b^2}{c^2-d^2}\)
b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\frac{a}{c}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)(Đpcm)
Có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\)
=> \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\)(Đpcm)
Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)
a)Áp dụng t/c của dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
b)\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}\)
Áp dụng t/c của dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
a) Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
=> \(\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2\) => \(\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Áp dụng t/c dãy tỉ số = nhau được: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)
Mặt khác, \(\frac{a^2}{c^2}=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)
Vậy \(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\left(=\left(\frac{a}{c}\right)^2\right)\)
b) \(\frac{a}{c}=\frac{b}{d}\)(câu a) => \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\) (t/c dãy tỉ số = nhau)
=> \(\left(\frac{a}{c}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Mặt khác, \(\left(\frac{a}{c}\right)^2=\frac{ab}{cd}\)(câu a) nên \(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a}{c}\right)^2\)