Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{c}=\frac{c}{b}=>\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\) (t/c dãy...)
lại có \(\frac{a}{c}=\frac{c}{b}=>c^2=ab\)
do đó:
\(\frac{a^2+c^2}{c^2+b^2}=\frac{c^2}{b^2}=\frac{ab}{b^2}=\frac{a}{b}\)(đpcm)
tick nhé
Ta có : a³ + b³ + c³ = 3abc
<=> (a + b + c)(a² + b² + c² - ab - bc - ca) = 0
Hoặc a + b + c = 0
Hoặc (a² + b² + c² - ab - bc - ca) = 0
TH1: a + b + c = 0 => a = -(b + c); b = -( a + c); c = -( a + b)
=> A = [1 - (b +c)/b][1 - (a + c)/c] [1 - (a + b)/a]
=> A =[1 - 1 - c/b] [1 - 1 - a/c] [1 - 1 - b/a]
=> A = (-c/b)(-a/c)(-b/a) = -1
TH2: (a² + b² + c² - ab - bc - ca) = 0 <=> (a - b)² +(b - c)² + (c - a)² = 0
=> a - b = b - c = c - a = 0 hay a = b = c
=> A = (1 + 1)(1 + 1)(1+ 1) = 8
a+ba−b=c+dc−d⇒a+bc+d=a−bc−da+ba−b=c+dc−d⇒a+bc+d=a−bc−d
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
a+bc+d=a−bc−d=a+b+a−bc+d+c−d=2a2c=aca+bc+d=a−bc−d=a+b+a−bc+d+c−d=2a2c=ac (1)(1)
a+bc+d=a−bc−d=a+b−a+bc+d−c+d=2b2d=bda+bc+d=a−bc−d=a+b−a+bc+d−c+d=2b2d=bd (2)(2)
Từ (1),(2)(1),(2), ta có :
ac=bd⇒ab=cd
ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{b}{a}=\frac{d}{c};\frac{a}{c}=\frac{b}{d};\frac{c}{a}=\frac{d}{b}\)
#