K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2019

  Ta có : a³ + b³ + c³ = 3abc 
<=> (a + b + c)(a² + b² + c² - ab - bc - ca) = 0 
Hoặc a + b + c = 0 
Hoặc (a² + b² + c² - ab - bc - ca) = 0 
TH1: a + b + c = 0 => a = -(b + c); b = -( a + c); c = -( a + b) 
=> A = [1 - (b +c)/b][1 - (a + c)/c] [1 - (a + b)/a] 
=> A =[1 - 1 - c/b] [1 - 1 - a/c] [1 - 1 - b/a] 
=> A = (-c/b)(-a/c)(-b/a) = -1 
TH2: (a² + b² + c² - ab - bc - ca) = 0 <=> (a - b)² +(b - c)² + (c - a)² = 0 
=> a - b = b - c = c - a = 0 hay a = b = c 
=> A = (1 + 1)(1 + 1)(1+ 1) = 8

12 tháng 7 2019

Trả lời

Hình như b viết thiếu đề hay sao ý

Ng ta ko cho 3a^2+3b^2 bằng bao nhiêu ag

12 tháng 7 2019

Ta có

3a^2+3b^2=10ab

3a^2-10ab+3b^2=0

3a^2-9ab-ab+3b^2=0

3a(a-3b)-b(a-3b)=0

(a-3b)(3a-b)=0

=>a-3b=0=>a=3b

=>3a-b=0=>3a=b

thay vào biểu thức

P=a-b/a+b=3b-b/3b+b=2b/4b=1/2

vậy P=1/2

9 tháng 9 2019

Gửi tạm trước 2 câu !

\(a,\text{ }3^2\cdot\frac{1}{243}\cdot81^2\cdot3^{-3}=3^2\cdot\frac{1}{3^5}\cdot\left(3^4\right)^2\cdot\frac{1}{3^3}=3^2\cdot\frac{1}{3^5}\cdot3^8\cdot\frac{1}{3^3}=3^2=9\)\(b,\text{ }\frac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\frac{3^{10}\cdot\left(3\cdot5\right)^5}{\left(5^2\right)^3\cdot\left(-3\cdot3\right)^7}=\frac{3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3^{15}\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3}{-5}\)

9 tháng 9 2019

Trả lời :

\(a,\text{ }3^2\cdot\frac{1}{243}\cdot81^2\cdot3^{-3}=3^2\cdot\frac{1}{3^5}\cdot\left(3^4\right)^2\cdot\frac{1}{3^3}=3^2\cdot\frac{1}{3^5}\cdot3^8\cdot\frac{1}{3^3}=3^2=9\)\(b,\text{ }\frac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\frac{3^{10}\cdot\left(3\cdot5\right)^5}{\left(5^2\right)^3\cdot\left(-3\cdot3\right)^7}=\frac{3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3^{15}\cdot5^5}{5^6\cdot3^7\cdot\left(-3\right)^7}=\frac{3}{-5}\)

P = x3 - 6x2 + 12x -8 + 6(x2 - 2x + 1 )  - (x3 + 1 )

   = x3 - 6x2 + 12x -8 + 6x2 - 12x + 6 - x3 - 1

    =  -3

\(\Rightarrow\)P ko phụ thuộc vào giá trị của x

#mã mã#

7 tháng 9 2019

Bây giờ tạm gọi các biểu thức ở mỗi bài lần lượt là A;B;C;...

a/\(A=3^2.\frac{1}{3^5}.3^8.\frac{1}{3^3}=3^2=9\)

b/\(B=\frac{3^{10}.3^5.5^5}{-5^6.3^{14}}=\frac{-3}{5}\)

c/\(C=2^3+3.1-\frac{1}{2^2}.2^2+\frac{2^2}{2}.2^3=8+3-1+16=26\)

d/\(D=\frac{3^4}{2^8}.\frac{2^{12}}{3^8}=\frac{2^4}{3^4}=\frac{16}{81}\)

e/\(E=\frac{-31^3}{2^9}.\frac{2^{20}}{31^4}=\frac{-2^{11}}{31}=\frac{-2048}{31}\)

f/\(F=\frac{-3^5}{2^{10}}.\frac{2^{20}}{3^{10}}=\frac{-2^{10}}{3^5}=\frac{-1024}{243}\)
 

28 tháng 7 2019

D = -x2 - 5y2 + 4xy + 2y - 1 = -(x2 - 4xy + 4y2) - (y2 - 2y + 1) = -(x - y)2 - (y - 1)2

Ta có: -(x - y)2 \(\le\)\(\forall\)x;y

-(y - 1)2 \(\le\)\(\forall\)y

=> -(x - y)2 - (y - 1)2 \(\le\)\(\forall\)x;y

hay D \(\le\)\(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\y-1=0\end{cases}}\) <=> x = y = 1

Vậy Max của D = 0 tại x = y = 1