K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 11 2019

Lời giải:

Kẻ $CT\perp AD$
Vì $\widehat{A}=90^0$ mà $AC$ là tia phân giác của góc $A$ nên $\widehat{HAC}=\widehat{CAT}=45^0$

Tam giác vuông tại $H$ là $HAC$ có góc $\widehat{HAC}=45^0$ nên là tam giác vuông cân, suy ra CH=AH$

Tứ giác $HATC$ có 4 góc đều là góc vuông và 2 cạnh kề nhau $CH=AH$ nên $HATC$ là hình vuông

$\Rightarrow CT=CH$

Xét tam giác $TDC$ và $HBC$ có:

$\widehat{DTC}=\widehat{BHC}=90^0$

$\widehat{TCD}=\widehat{HCB}(=90^0-\widehat{HCD})$

$TC=HC$ (cmt)

$\Rightarrow \triangle TDC=\triangle HBC(g.c.g)$

$\Rightarrow S_{TDC}=S_{HBC}$

Do đó:

$S_{ABCD}=S_{HBC}+S_{HADC}=S_{TDC}+S_{HADC}=S_{HACT}=CH^2=a^2$

(đơn vị diện tích)

Vậy....

AH
Akai Haruma
Giáo viên
30 tháng 11 2019

Hình vẽ:

Violympic toán 9

14 tháng 6 2019

A B C D O 70 0 M N P Q

Qua 4 đỉnh A,B,C,D của tứ giác ABCD đã cho, dựng các đường thẳng song song với 2 đường chéo AC,BD. Chúng cắt nhau tại 4 điểm M,N,P,Q. Khi đó ta có tứ giác MNPQ,AOBM,AODN,DOCP,BOCQ là các hình bình hành.

Suy ra MQ = NP = AC = 5,3 (cm), MN = PQ = BD = 4 (cm)

Đồng thời ^MNP = ^MQP = ^AOD = 700 (Các góc có 2 cạnh tương ứng song song)

Ta cũng có SAOD = SAND = SAODN/2. Từ đó SABCD = SMNPQ/2 = SMQP = SMNP

Xét \(\Delta\)MNP: MN = 4, NP = 5,3, ^MNP = 700 

Có SMNP = 1/2.MN.NP.Sin^MNP = 4.5,3.Sin700 \(\approx\)19,9 (cm2) => SABCD\(\approx\)19.9 (cm2)

Kết luận: ...

14 tháng 6 2019

Cho mik sửa tí: SABCD = SMNP = 1/2.MN.NP.Sin^MNP = 1/2.4.5,3.Sin700 \(\approx\)10,0 (cm2)

Vậy SABCD \(\approx\)10,0 cm2.

29 tháng 4 2017

A D M N P Q B C

Giải:

Ta có: \(\widehat{DAB}=120^0\left(gt\right)\) nên \(\widehat{ADC}=60^0\)

Đường phân giác của \(\widehat{A}\) cắt đường phân giác của \(\widehat{D}\) tại \(M\) thì \(\Delta ADM\) có hai góc bằng \(60^0\)\(30^0\) nên các đường phân giác đó vuông góc với nhau.

Lập luận tương tự chứng tỏ tứ giác \(MNPQ\)\(4\) góc vuông nên nó là hình chữ nhật.

Trong tam giác vuông \(ADM\) có:

\(DM=AD\sin\widehat{DAM}=b\sin60^0=\dfrac{b\sqrt{3}}{2}\)

Trong tam giác vuông \(DCN\) và có:

\(DN=DC\sin\widehat{DCN}=a\sin60^0=\dfrac{a\sqrt{3}}{2}\)

\(\Rightarrow MN=DN-DM=\left(a-b\right)\dfrac{\sqrt{3}}{2}\)

Trong tam giác vuông \(DCN\)\(CN=CD\cos60^0=\dfrac{a}{2}\)

Trong tam giác vuông \(BCP\)\(CP=CB\cos60^0=\dfrac{b}{2}\)

Vậy \(NP=CN-CP=\dfrac{a-b}{2}\)

Suy ra diện tích hình chữ nhật \(MNPQ\) là:

\(MN.NP=\left(a-b\right)^2\dfrac{\sqrt{3}}{4}\left(đvdt\right)\)

31 tháng 5 2017

Ôn tập Hệ thức lượng trong tam giác vuông

23 tháng 6 2017

Đường kính và dây của đường tròn

2 tháng 4 2018

Giải bài 64 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 64 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 64 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 64 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 64 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

18 tháng 1 2021

60 o 90 o 120 o A B I C D O H

b) 

Gọi AC giao DB = I

Góc AIB có đỉnh I nằm trong đường tròn

\(\Rightarrow\widehat{AIB}=\frac{1}{2}.\left(sđ\widebat{AB}+sđ\widebat{CD}\right)\)

\(=\frac{1}{2}.\left(60^0+90^o\right)=90^o\)

=> AI vuông BI hay AC vuông BD ( đpcm )

18 tháng 6 2017

1 ,áp dụng bộ 3 pitago trong tam giác abc  suy ra AC=5 cm dựa vào pitago đảo có : \(5^2+12^2\)= 13 suy ra tam giác ACD vuông tại c  

S tứ giác = SABC  +SADC =1/2 .3.4 +1/2. 5.12=36 cm ^2.

2,bài 2 vẽ hình lâu lém tự làm nha bn 

3,

18 tháng 6 2017

B1 minh da lam dc trc do roi nhung van cam on ban vi da giup do

13 tháng 8 2016

GIẢI: 
a) Chứng minh tam giác CKH đồng dạng tam giác BCA 
AKC^ + ABC^ = 2v => AKCH nội tiếp 
=> CHK^ = CAB^ (1) ( cùng chắn cung CK) 
CKH^ = CAH^ (2) ( cùng chắn cung CH) 
CAH^ = ABC^ (3) ( so le trong) 
(2) và (3) => CKH^ = ACB^ (4) 
(1) và (4) => ΔCKH ~ ΔBCA (g.g) 

b) Chứng minh HK=AC.sinBAD 
ΔCKH ~ ΔBCA =>HK/AC = CH/AB = CH/CD = sin(CDH^) = sin(BAD^) ( đồng vị) 
=> HK = AC.sin(BAD^) 

c) Tính diện tích tứ giác AKCH nếu góc BAD = 60 độ, AB=4cm, AD=5cm 
AB = CD = 4 
CDH^ = BAD^ = 60* 
=> CH = 4√3/2 = 2√3 ( đường cao tam giác đều cạnh = 4) 
DH = CD/2 = 4/2 = 2 
=> AH = AD + DH = 5 + 2 = 7 
AD = BC = 5 
CBK^ = BAD^ = 60* 
=> CK = 5.√3/2 
BK = BC/2 = 5/2 
=> AK = AB + BK = 4 + 5/2 = 13/2 
S(AKCH) = S(ACK) + S(ACH) = AK.CK/2 + AH.CH/2 
= (13/2).( 5.√3/2)/2 + 7.(2√3)/2 = 732√3/8 

chúc bạn học tốt