Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Qua 4 đỉnh A,B,C,D của tứ giác ABCD đã cho, dựng các đường thẳng song song với 2 đường chéo AC,BD. Chúng cắt nhau tại 4 điểm M,N,P,Q. Khi đó ta có tứ giác MNPQ,AOBM,AODN,DOCP,BOCQ là các hình bình hành.
Suy ra MQ = NP = AC = 5,3 (cm), MN = PQ = BD = 4 (cm)
Đồng thời ^MNP = ^MQP = ^AOD = 700 (Các góc có 2 cạnh tương ứng song song)
Ta cũng có SAOD = SAND = SAODN/2. Từ đó SABCD = SMNPQ/2 = SMQP = SMNP
Xét \(\Delta\)MNP: MN = 4, NP = 5,3, ^MNP = 700
Có SMNP = 1/2.MN.NP.Sin^MNP = 4.5,3.Sin700 \(\approx\)19,9 (cm2) => SABCD\(\approx\)19.9 (cm2)
Kết luận: ...
Cho mik sửa tí: SABCD = SMNP = 1/2.MN.NP.Sin^MNP = 1/2.4.5,3.Sin700 \(\approx\)10,0 (cm2)
Vậy SABCD \(\approx\)10,0 cm2.
Giải:
Ta có: \(\widehat{DAB}=120^0\left(gt\right)\) nên \(\widehat{ADC}=60^0\)
Đường phân giác của \(\widehat{A}\) cắt đường phân giác của \(\widehat{D}\) tại \(M\) thì \(\Delta ADM\) có hai góc bằng \(60^0\) và \(30^0\) nên các đường phân giác đó vuông góc với nhau.
Lập luận tương tự chứng tỏ tứ giác \(MNPQ\) có \(4\) góc vuông nên nó là hình chữ nhật.
Trong tam giác vuông \(ADM\) có:
\(DM=AD\sin\widehat{DAM}=b\sin60^0=\dfrac{b\sqrt{3}}{2}\)
Trong tam giác vuông \(DCN\) và có:
\(DN=DC\sin\widehat{DCN}=a\sin60^0=\dfrac{a\sqrt{3}}{2}\)
\(\Rightarrow MN=DN-DM=\left(a-b\right)\dfrac{\sqrt{3}}{2}\)
Trong tam giác vuông \(DCN\) có \(CN=CD\cos60^0=\dfrac{a}{2}\)
Trong tam giác vuông \(BCP\) có \(CP=CB\cos60^0=\dfrac{b}{2}\)
Vậy \(NP=CN-CP=\dfrac{a-b}{2}\)
Suy ra diện tích hình chữ nhật \(MNPQ\) là:
\(MN.NP=\left(a-b\right)^2\dfrac{\sqrt{3}}{4}\left(đvdt\right)\)
1 ,áp dụng bộ 3 pitago trong tam giác abc suy ra AC=5 cm dựa vào pitago đảo có : \(5^2+12^2\)= 13 suy ra tam giác ACD vuông tại c
S tứ giác = SABC +SADC =1/2 .3.4 +1/2. 5.12=36 cm ^2.
2,bài 2 vẽ hình lâu lém tự làm nha bn
3,
B1 minh da lam dc trc do roi nhung van cam on ban vi da giup do
GIẢI:
a) Chứng minh tam giác CKH đồng dạng tam giác BCA
AKC^ + ABC^ = 2v => AKCH nội tiếp
=> CHK^ = CAB^ (1) ( cùng chắn cung CK)
CKH^ = CAH^ (2) ( cùng chắn cung CH)
CAH^ = ABC^ (3) ( so le trong)
(2) và (3) => CKH^ = ACB^ (4)
(1) và (4) => ΔCKH ~ ΔBCA (g.g)
b) Chứng minh HK=AC.sinBAD
ΔCKH ~ ΔBCA =>HK/AC = CH/AB = CH/CD = sin(CDH^) = sin(BAD^) ( đồng vị)
=> HK = AC.sin(BAD^)
c) Tính diện tích tứ giác AKCH nếu góc BAD = 60 độ, AB=4cm, AD=5cm
AB = CD = 4
CDH^ = BAD^ = 60*
=> CH = 4√3/2 = 2√3 ( đường cao tam giác đều cạnh = 4)
DH = CD/2 = 4/2 = 2
=> AH = AD + DH = 5 + 2 = 7
AD = BC = 5
CBK^ = BAD^ = 60*
=> CK = 5.√3/2
BK = BC/2 = 5/2
=> AK = AB + BK = 4 + 5/2 = 13/2
S(AKCH) = S(ACK) + S(ACH) = AK.CK/2 + AH.CH/2
= (13/2).( 5.√3/2)/2 + 7.(2√3)/2 = 732√3/8
chúc bạn học tốt
Lời giải:
Kẻ $CT\perp AD$
Vì $\widehat{A}=90^0$ mà $AC$ là tia phân giác của góc $A$ nên $\widehat{HAC}=\widehat{CAT}=45^0$
Tam giác vuông tại $H$ là $HAC$ có góc $\widehat{HAC}=45^0$ nên là tam giác vuông cân, suy ra CH=AH$
Tứ giác $HATC$ có 4 góc đều là góc vuông và 2 cạnh kề nhau $CH=AH$ nên $HATC$ là hình vuông
$\Rightarrow CT=CH$
Xét tam giác $TDC$ và $HBC$ có:
$\widehat{DTC}=\widehat{BHC}=90^0$
$\widehat{TCD}=\widehat{HCB}(=90^0-\widehat{HCD})$
$TC=HC$ (cmt)
$\Rightarrow \triangle TDC=\triangle HBC(g.c.g)$
$\Rightarrow S_{TDC}=S_{HBC}$
Do đó:
$S_{ABCD}=S_{HBC}+S_{HADC}=S_{TDC}+S_{HADC}=S_{HACT}=CH^2=a^2$
(đơn vị diện tích)
Vậy....
Hình vẽ: