Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là giao điểm 2 đường chéo của tứ giác ABCD.
Xét :Tam giác BOC có: BC < OB + OC (bất đẳng thức trong tam giác)
Tam giác AOD có: AD < OD + OA (.............................................)
Do đó: BC + AD < (OB + OD) +(OC + OA)
hay BC + AD < BD + AC
Mà AD = AC (GT) => BC < BD.
A B C D O
Bạn ơi có đáp án câu này không mình xin với. Mình cũng đang học
Gọi O là giao điểm của hai đường chéo AC và AD .
Xét \(\Delta AOD\)có :
\(AD< AO+OD\)(1)
Xét \(\Delta BOC\)có :
\(BC< OC+BO\)(2)
tỪ (1) VÀ (2)
Cộng vế với vế ta được :
\(AD+BC< AC+BD\)(3)
Theo đề bài ta có :
\(AC=AD\)
\(\Rightarrow BC< BD\)(đpcm)
Hi vọng bạn có kiến thức vững về BĐT tam giác nha, mấy bài này toàn BĐT tam giác thoi, mình ko chứng minh lại đâu.
Bài 3:
a) Xét tam giác AOB: \(OB>AB-AO\)
Xét tam giác DOC: \(OD>DC-OC\)
Cộng vế theo vế: \(OB+OD>AB+DC-\left(AO+OC\right)\Leftrightarrow BD>AB+DC-AC\Leftrightarrow BD+AC>AB+DC\)
b) Hoàn toàn tương tự với 2 tam giác AOD và BOC:
\(\Rightarrow\hept{\begin{cases}OD>AD-AO\\OB>BC-OC\end{cases}\Rightarrow BD>AD+BC-AC\Leftrightarrow BD+AC>AD+BC}\)
Bài 4:
a) Từ câu 3 ta có \(\hept{\begin{cases}BD+AC>AB+CD\\BD+AC>AD+BC\end{cases}}\)Cộng vế theo vế:
\(\Rightarrow2\left(BD+AC\right)>AB+BC+CD+DA=P_{ABCD}\Rightarrow BD+AC>\frac{P_{ABCD}}{2}\)
b) Câu này thực ra không cần đề cho trước \(AC< \frac{P_{ABCD}}{2}\)đâu, vì đây là điều hiển nhiên mà
Xét 2 tam giác ABC và ADC: \(\hept{\begin{cases}AC< AB+BC\\AC< AD+DC\end{cases}}\)cộng vế theo vế:
\(\Rightarrow2AC< AB+BC+CD+DA=P_{ABCD}\Rightarrow AC< \frac{P_{ABCD}}{2}\)(1)
Hoàn toàn tương tự với 2 tam giác ABD và CBD \(\Rightarrow BD< \frac{P_{ABCD}}{2}\)(2)
Cộng (1) và (2) vế theo vế: \(AC+BD< P_{ABCD}\)
Xét Δ ABD ta có :
\(AD+BD>AB\left(1\right)\)
Xét Δ ABC ta có :
\(AC+BC>AB\left(2\right)\)
\(\left(1\right)-\left(2\right)\Rightarrow AD+BD-AC-BC>0\)
\(\Rightarrow AD-AC+BD-BC>0\)
mà \(AD=AC\) (đề bài)
\(\Rightarrow BD-BC>0\)
\(\Rightarrow BD>BC\)
\(\Rightarrow dpcm\)
Gọi O là giao điểm 2 đường chéo
Xét tam giác BOC có: OB+OC>BC(bđttg)
tam giác AOC có: OA+OB>AD(bđttg)
=>OA+OB+OC+OD>BC+AD
hay BD+AC>BC+AD
Mà AC=AD(gt) nên BD>BC
=>BC<BD(đpcm)