Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi có đáp án câu này không mình xin với. Mình cũng đang học
Gọi O là giao điểm 2 đường chéo của tứ giác ABCD.
Xét :Tam giác BOC có: BC < OB + OC (bất đẳng thức trong tam giác)
Tam giác AOD có: AD < OD + OA (.............................................)
Do đó: BC + AD < (OB + OD) +(OC + OA)
hay BC + AD < BD + AC
Mà AD = AC (GT) => BC < BD.
A B C D O
P/s : Chứng minh rằng AC + BD < AB + BC + CD + DA .
Gọi O là giao điểm của hai đường chéo AC và BD .
Ta có :
Xét tam giác OAB có :
\(OA+OB>AB\) ( bất đẳng thức trong tam giác ) (1)
Xét tam giác OBC có :
\(OB+OC>BC\)( BĐT tam giác ) (2)
Xét tam giác ODC có :
\(OD+OC>DC\) (BĐT tam giác )(3)
Xét tam giác OAD có :
\(OA+OD>AD\) (4)
Cộng từng vế ta có :
\(AC+BD< AB+BC+CD+DA\) (đpcm)