K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

Gọi O là giao điểm hai đường chéo AC và BD.

Trong tam giác BOC, ta có: BC< OB+ OC(1)

Trong tam giác AOD, ta có: AD<OA+OD(2)

Từ (1) và (2) => BC+AD<OA+OB+OC+OD

                    =>BC+AD<AC+BD(3)

 Mà AC=AD (4)

Từ (3) và (4)=> BC< BD(đpcm)

14 tháng 9 2017

Bạn ơi có đáp án câu này không mình xin với. Mình cũng đang học

15 tháng 9 2017

Mk ko biết 

15 tháng 6 2019

Gọi O là giao điểm 2 đường chéo của tứ giác ABCD.
Xét :Tam giác BOC có: BC < OB + OC  (bất đẳng thức trong tam giác)
        Tam giác AOD có: AD < OD + OA  (.............................................)
Do đó: BC + AD < (OB + OD) +(OC + OA) 
hay BC + AD < BD + AC 
Mà AD = AC (GT) => BC < BD. 

A B C D O

22 tháng 7 2018

P/s : Chứng minh rằng AC + BD < AB + BC + CD + DA .

Gọi O là giao điểm của hai đường chéo AC  và BD .

Ta có : 

Xét tam giác OAB có :

\(OA+OB>AB\) ( bất đẳng thức trong tam giác ) (1)

Xét tam giác OBC có :  

\(OB+OC>BC\)( BĐT tam giác ) (2)

Xét tam giác ODC có :

\(OD+OC>DC\) (BĐT tam giác )(3)

Xét tam giác OAD có :

\(OA+OD>AD\) (4)

Cộng từng vế ta có :

\(AC+BD< AB+BC+CD+DA\) (đpcm)