Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi K là trung điểm của MC suy ra: MK=KC=1/2 MC
Do đó: AM=MK
DK là đường trung bình của tam giác BMC nên DK song song với BM và DK =1/2 BM (2)
Tam giác ADK có: M là trung điểm của AK và OM song song với DK(cmt)
Vì thế O là trung điểm của AD.
b, OM là đường trung bình của tam giác ADK suy ra: OM=1/2 DK (1)
TỪ (1) và (2) suy ra: OM=1/4 BM
Chúc bạn học tốt.
Mình chỉ giải c thôi nhé :) Phần a, b nếu ai muốn biết hỏi @Nấm Chanel
A B C H E F K O I
Có \(\widehat{HEA}=\widehat{BAC}=90^o\) nên \(EH\text{//}AC\) hay \(EH\text{//}FK\)
Đồng thời tứ giác \(EHFA\) có 3 góc vuông nên là hình chữ nhật, tức EH = FA ( 2 cạnh đối ), mà AF = FK ( giả thiết ) nên EH = FK
Từ đó suy ra tứ giác EHKF là hình bình hành nên EK cắt HF tại trung điểm mỗi đường, hay I là trung điểm EK (1)
Đồng thời hình chữ nhật EHFA có hai đường chéo EF và AH cắt nhau tại O, nên O là trung điểm EF ( tính chất hình chữ nhật ) (2)
(1)(2)\(\Rightarrow\)OI là đường trung bình \(\Delta EKF\) , suy ra OI // FK, hay OI // AC
Vậy ...
Key t chụp ở Câu hỏi của Lưu Đức Mạnh - Toán lớp 8 - Học toán với OnlineMath.Còn hình vẽ là t vẽ nha.câu c đang nghĩ~~~
C,Gọi G là giao điểm của AC và BE
=> \(AG\perp BE\) (C là trực tâm tam giác ABE)
Lại có Góc GAB= Góc GBA = 45 độ
=> tam giác ABG vuông cân
Mà A,B cố định
=> G cố định
CMTT câu b => D;F;G thẳng hàng
=> DF luôn đi qua điểm G cố định khi M di động trên AB
Vậy DF luôn đi qua điểm G cố định khi M di động trên AB
P A B C D N Q K
Do AD // BC nên \(\frac{PN}{PK}=\frac{AN}{BK}\) và \(\frac{NQ}{QK}=\frac{ND}{BK}\)(Hệ quả định lý Ta-let)
Mà AN = ND nên \(\frac{PN}{PK}=\frac{NQ}{QK}\Rightarrow NQ.PK=NP.KQ\left(đpcm\right)\)