Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì AB//CD, ta có góc ACD = góc BCD = 180 - góc D = 180 - 60 = 120 độ.
Vì AB//CD, ta có góc ACD = góc BAD.
Vậy số đo góc A là 120 độ.
b) Gọi góc BCD là x độ.
Theo giả thiết, góc B phần góc D = 4/5, ta có:
góc B = (4/5) * góc D
= (4/5) * 60
= 48 độ.
Vì AB//CD, ta có góc BCD = góc BAD.
Vậy góc BAD = góc BCD = x độ.
Vì tứ giác ABCD là tứ giác lồi, tổng các góc trong tứ giác ABCD là 360 độ.
Ta có: góc A + góc B + góc C + góc D = 360 độ.
Vì góc D = 60 độ, góc A = 120 độ và góc B = 48 độ, ta có:
120 + 48 + góc C + 60 = 360
góc C = 360 - 120 - 48 - 60 = 132 độ.
Vậy số đo góc B là 48 độ và số đo góc C là 132 độ.
* Ib = bài 4
1:
Xét ΔCHD có \(\widehat{CHD}+\widehat{HCD}+\widehat{HDC}=180^0\)
=>\(\widehat{HCD}+\widehat{HDC}=180^0-110^0=70^0\)
=>\(\dfrac{1}{2}\left(\widehat{ADC}+\widehat{BCD}\right)=70^0\)
=>\(\widehat{ADC}+\widehat{BCD}=140^0\)
Xét tứ giác ABCD có
\(\widehat{ADC}+\widehat{BCD}+\widehat{DAB}+\widehat{ABC}=360^0\)
=>\(\widehat{DAB}+\widehat{ABC}=220^0\)
mà \(\widehat{DAB}-\widehat{ABC}=40^0\)
nên \(\widehat{ABC}=\dfrac{220^0-40^0}{2}=90^0\)
=>BA\(\perp\)BC
2:
Xét tứ giác ABCD có
\(\widehat{BAD}+\widehat{ABC}+\widehat{BCD}+\widehat{ADC}=360^0\)
=>\(\widehat{BCD}+\widehat{ADC}=360^0-220^0=140^0\)
=>\(2\cdot\left(\widehat{KCD}+\widehat{KDC}\right)=140^0\)
=>\(\widehat{KCD}+\widehat{KDC}=70^0\)
Xét ΔCKD có
\(\widehat{CKD}+\widehat{KCD}+\widehat{KDC}=180^0\)
=>\(\widehat{CKD}=180^0-70^0=110^0\)
Bài 1)
Trên AD lấy E sao cho AE = AB
Xét ∆ACE và ∆ACB ta có :
AC chung
DAC = BAC ( AC là phân giác)
AB = AE (gt)
=> ∆ACE = ∆ACB (c.g.c)
=> CE = CB (1)
=> AEC = ABC = 110°
Mà AEC là góc ngoài trong ∆EDC
=> AEC = EDC + ECD ( Góc ngoài ∆ bằng tổng 2 góc trong không kề với nó)
=> ECD = 110 - 70
=> EDC = 40°
Xét ∆ EDC :
DEC + EDC + ECD = 180 °
=> CED = 180 - 70 - 40
=> CED = 70°
=> CED = EDC = 70°
=> ∆EDC cân tại C
=> CE = CD (2)
Từ (1) và (2) :
=> CB = CD (dpcm)
b) Ta có thể thay sao cho tổng 2 góc đối trong hình thang phải = 180°
Ta có: góc A+B+C+D=360 =>C+D=150 độ
Tính góc CED + EDC=1/2C+1/2D=1/2(C+D)=75(do phân giác)
=>E=180-75=105
ta có góc tạo bởi 2 tia phân giác của 2 góc kề có tổng là 90 độ (có cm trong sgk)
nên ECF+EDF=90+80=180 độ
=>CFD= 360-180-105=75
Xong rồi, nhưng bạn lập luận chặt chẽ hơn nhé
Tứ giác ABCD có A^+B^+C^+D^=360độ
D^+C^=150độ
\(\frac{1}{2}\)D^+\(\frac{1}{2}\)C^=\(\frac{150}{2}\)độ
\(\Rightarrow\)D2^+C2^=\(\frac{150}{2}\)=75độ
Tam giác DEC có D2^+C2^+CED^=180độ
CED^=105độ
Em tham khảo tại link dưới đây nhé:
Câu hỏi của Hoàng Tử Bóng Đêm Kiyoshi - Toán lớp 8 - Học toán với OnlineMath