K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

hep

 

Cho hai đường thăng \(\Delta\) và \(\Delta'\) chéo nhau nhận AA' làm đoạn vuông góc chung, trong đó A thuộc \(\Delta\)  và A' thuộc \(\Delta'\). Gọi (P) là mặt phẳng qua A vuông góc với \(\Delta'\) và d là hình chiếu vuông góc của \(\Delta\) trên mặt phẳng (P). Đặt AA' = a, góc nhọn giữa \(\Delta\) và d là \(\alpha\). Mặt phẳng (Q) song song với mặt phẳng (P) cắt \(\Delta\) và \(\Delta'\) lần lượt tại...
Đọc tiếp

Cho hai đường thăng \(\Delta\) và \(\Delta'\) chéo nhau nhận AA' làm đoạn vuông góc chung, trong đó A thuộc \(\Delta\)  và A' thuộc \(\Delta'\). Gọi (P) là mặt phẳng qua A vuông góc với \(\Delta'\) và d là hình chiếu vuông góc của \(\Delta\) trên mặt phẳng (P). Đặt AA' = a, góc nhọn giữa \(\Delta\) và d là \(\alpha\). Mặt phẳng (Q) song song với mặt phẳng (P) cắt \(\Delta\) và \(\Delta'\) lần lượt tại M và M'. Gọi \(M_1\) là hình chiếu vuông góc của M trên mặt phẳng (P)

a) Chứng minh 5 điểm A, A', M, M', \(M_1\) cùng nằm trên mặt cầu (S). Xác định tâm O của (S). Tính bán kính của (S) theo \(a,\alpha\) và khoảng cách x giữa hai mặt phẳng (P), (Q) ?

b) Khi x thay đổi, tâm O mặt cầu (S) di động trên đường nào ? Chứng minh rằng khi (Q) thay đổi mặt cầu (S) luôn luôn đi qua một đường tròn cố định

1
20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

1 tháng 4 2016

Gọi O là giao điểm của AC và BD \(\Rightarrow A_1O\perp\left(ABCD\right)\)

Gọi E là trung điểm của AD \(\Rightarrow\begin{cases}OE\perp AD\\A_1E\perp AD\end{cases}\)

Suy ra \(\widehat{A_1EO}\) là góc giữa 2 mặt phẳng \(\left(ADD_1A_1\right)\) và \(\left(ABCD\right)\) \(\Rightarrow\widehat{A_1EO}=60^o\)

Suy ra : \(A_1O=OE.\tan\widehat{A_1EO}=\frac{AB}{2}\tan\widehat{A_1EO}=\frac{a\sqrt{3}}{2}\)

Diện tích đáy \(S_{ABCD}=AB.AD=a^2\sqrt{3}\)

Thể tích \(V_{ABCD.A'B'C'D'}=S_{ABCD}.A_1O=\frac{3a^2}{2}\)

Ta có : \(B_1C||A_1D\)\(\Rightarrow B_1C||\left(A_1CD\right)\)

                             \(\Rightarrow d\left(B_1,\right)\left(A_1BD\right)=d\left(C,\left(A_1BD\right)\right)=CH\)

                            \(\Rightarrow d\left(B_1,\right)\left(A_1BD\right)=CH=\frac{CD.CB}{\sqrt{CD^2+CB^2}}=\frac{a\sqrt{3}}{2}\)

 

1 tháng 4 2016

A E D C B O A1 B1 C1 D1

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

11 tháng 7 2016

Một đường thẳng muốn vuông góc với một mặt phẳng thì phải vuông góc với 2 đường thẳng chéo nhau chứ bạn? ở ba câu trên bạn mới chứng minh nó vuông với 1 đường mà

 

14 tháng 5 2016

A C D B (P) (Q)

Do \(\left(P\right)\perp\left(Q\right)\) và \(\left(P\right)\cap\left(Q\right)=\Delta\)

và \(DB\perp\left(\Delta\right)\left(DB\in\left(Q\right)\right)\)

Nên \(DB\perp\left(P\right)\Rightarrow DB\perp BC\)

Tương tự ta có :

                \(CA\perp AD\)

Vì \(\widehat{CAD}=\widehat{DBC}=90^0\) nên CD chính là  đường kính hình cầu ngoại tiếp tứ diện ABCD.

Gọi R là bán kính của hinh cầu này thì :

                \(R=\frac{1}{2}CD\)  (1)

Theo định lý Pitagoc trong 2 tam giác vuông CAD, ABD ta có :

        \(CD^2=CA^2+AD^2=CA^2+BA^2+BD^2=3a^2\)

                                         \(\Rightarrow CD=a\sqrt{3}\) (2)

Từ (1) và (2) suy ra \(R=\frac{a\sqrt{3}}{2}\)

NV
13 tháng 5 2020

Gọi H là hình chiếu của S lên đáy

Do \(SA=SB=SC\Rightarrow HA=HB=HC\)

\(\Rightarrow H\) là tâm đường tròn ngoại tiếp tam giác ABC

\(\Rightarrow\) H là trung điểm AC hay H là tâm đáy

\(AB=\sqrt{AC^2-BC^2}=a\sqrt{3}\)

Do H là hình chiếu S lên đáy \(\Rightarrow BH\) là hình chiếu của SB lên đáy

\(\Rightarrow\widehat{SBH}=60^0\Rightarrow SH=BH.tan60^0=a\sqrt{3}\)

\(V=\frac{1}{3}BH.AB.BC=\frac{1}{3}.a\sqrt{3}.a\sqrt{3}.a=a^3\)

Ko đáp án nào đúng?

1 tháng 4 2017

Giải:

a) Mặt phẳng (ACD) đi qua A(5 ; 1 ; 3) và chứa giá của các vectơ (0 ; -1 ; 1)

(-1 ; -1 ; 3).

Vectơ = (-2 ; -1 ; -1) vuông góc với mặt phẳng (ACD).

Phương trình (ACD) có dạng:

2(x - 5) + (y - 1) + (z - 3) = 0.

hay 2x + y + z - 14 = 0.

Tương tự: Mặt phẳng (BCD) qua điểm B(1 ; 6 ; 2) và nhận vectơ làm vectơ pháp tuyến.

Ta có :(4 ; -6 ; 2), (3 ; -6 ; 4) và

= (-12 ; -10 ; -6)

Xét (6 ; 5 ; 3) thì nên cũng là vectơ pháp tuyến của mặt phẳng (BCD). Phương trình mặt phẳng (BCD) có dạng:

6(x - 1) + 5(y - 6) +3(z - 2) = 0

hay 6x + 5y + 3z - 42 = 0.

b) Mặt phẳng ( α ) qua cạnh AB và song song với CD thì ( α ) qua A và nhận

(-4 ; 5 ; 1) , (-1 ; 0 ; 2) làm vectơ chỉ phương.

Vectơ = (10 ; 9 ; 5) là vectơ pháp tuyến của ( α ).

Phương trình mặt phẳng ( α ) có dạng : 10x + 9y + 5z - 74 = 0.