\(MA^2+MB^2+MC^2+MD^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 6 2020

Gọi O là tâm đáy \(\Rightarrow SO=\sqrt{SA^2-OC^2}=\sqrt{SA^2-\left(\frac{AC}{2}\right)^2}=\frac{a\sqrt{6}}{2}\)

Gọi I là điểm sao cho \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}+\overrightarrow{IS}=0\)

\(\Leftrightarrow4.\overrightarrow{IO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}+\overrightarrow{IS}=0\)

\(\Leftrightarrow4\overrightarrow{IO}+\overrightarrow{IS}=0\Rightarrow\overrightarrow{IO}=-\frac{1}{4}\overrightarrow{IS}\)

\(\Rightarrow I\) nằm trên đoạn thẳng SO và chia SO theo tỉ lệ \(IO=\frac{1}{4}IS\Rightarrow IS=\frac{4}{5}SO=\frac{2a\sqrt{6}}{5}\)

Ta có:

\(Q=MA^2+MB^2+MC^2+MD^2+MS^2\)

\(=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{IB}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{IC}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{ID}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{IS}\right)^2\)

\(=5MI^2+IA^2+IB^2+IC^2+ID^2+IS^2\)

Mà I cố định \(\Rightarrow Q_{min}\) khi và chỉ khi \(MI_{min}\)

\(\Rightarrow\) M là hình chiếu vuông góc của I lên (SCD)

A B C D S O I M N

Gọi N là trung điểm CD, kẻ \(IM\perp SN\Rightarrow IM\perp\left(SCD\right)\)

\(SN=\sqrt{SO^2+ON^2}=\frac{a\sqrt{7}}{2}\Rightarrow SM=SI.cos\widehat{NSI}=\frac{SI.SO}{SN}=\frac{12a\sqrt{7}}{35}\)

\(\Rightarrow\frac{d\left(M;\left(ACD\right)\right)}{SO}=1-\frac{SM}{SN}=1-\frac{24}{35}=\frac{11}{35}\)

\(\frac{S_{ACD}}{S_{ABCD}}=\frac{1}{2}\)

\(\Rightarrow\frac{V_2}{V_1}=\frac{d\left(M;\left(ACD\right)\right).S_{ACD}}{SO.S_{ABCD}}=\frac{11}{35}.\frac{1}{2}=\frac{11}{70}\)

AH
Akai Haruma
Giáo viên
26 tháng 8 2017

Lời giải:
a)

Kẻ \(AH\perp CD\). Do tam giác $ACD$ cân tại $A$ nên $H$ là trung điểm của $CD$.

Tam giác $BCD$ có $BC=BD$ nên là tam giác cân, do đó \(BH\perp CD\)

Xét thấy \(\left\{\begin{matrix} AH\perp CD\\ BH\perp CD\end{matrix}\right.\Rightarrow (AHB)\perp CD\Rightarrow AB\perp CD\)

b)

\(\left\{\begin{matrix} AH\perp CD\\ AH\perp BH\end{matrix}\right.\Rightarrow AH\perp (BCD)\) hay $AH$ là đường cao hạ từ $A$ của tứ diện $ABCD$

Tam giác \(ACD\)\(AC^2+AD^2=CD^2\Rightarrow \triangle ACD\) vuông tại $A$

\(\Rightarrow AH=CH=HD=\frac{CD}{2}=a\)

Ta cũng chứng minh được tam giác $BCD$ vuông tại $B$

Do đó, \(V_{ABCD}=\frac{1}{3}.AH.S_{BCD}=\frac{1}{3}.a.\frac{\sqrt{2}a.\sqrt{2}a}{2}=\frac{a^3}{3}\)

17 tháng 5 2016

Gọi I là trung điểm của đoạn thẳng AB. Khi đó \(I\left(2;0;2\right)\) với mọi điểm M đều có :

\(MA^2+MB^2=\overrightarrow{MA^2}+\overrightarrow{MB^2}\)

                       \(=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{IB}\right)^2\)

                       \(=2MI^2+\left(IA^2+IB^2\right)=2MI^2+\frac{AB^2}{2}\)

Do đó \(M\in\left(P\right)\) sao cho \(MA^2+MB^2\) bé nhất khi và chỉ khi M là hình chiếu của I trên mặt phẳng (P)

Gọi \(\left(x;y;z\right)\) là tọa độ hình chiếu vuông góc của điểm I trên mặt phẳng (P). Khi đó ta có hệ phương trình :

\(\begin{cases}x+y+z-6=0\\\frac{x-2}{1}=\frac{y-0}{1}=\frac{z-2}{1}\end{cases}\)

Giải hệ thu được :

\(x=\frac{8}{3};y=\frac{2}{3};z=\frac{8}{3}\)

Vậy điểm M cần tìm là \(M\left(\frac{8}{3};\frac{2}{3};\frac{8}{3}\right)\)

Chọn B

2 tháng 1 2017

Bài này bạn không nên dùng phương pháp giải tích, dùng hình học cho dễ!

A M1 M2 O M'

Đường thẳng AO cắt mặt cầu (S) tại 2 điểm M1 và M2

Xét một đường tròn (C)= (O;R=3) bất kỳ thuộc (S) và điểm M di động trên (C) và không trùng M1, M2

Không mất tính tổng quát, điểm M có thể đại diện cho mọi điểm trên (S) (trừ M1, M2)

+) Dễ thấy \(\widehat{M_2MM_1}=90^0\),

tia M'M1 nằm giữa tia M'A và M'M2 nên \(\widehat{M_2MA}>\widehat{M_2MM_1}=90^0\)

\(\Rightarrow\widehat{M_2MA}\) là góc tù

\(\Rightarrow\Delta M_2MA\)luôn có cạnh \(AM_2>AM\)

Vậy MA max khi và chỉ khi \(M\equiv M_2\)

tìm điểm M2 bằng cách \(\frac{\overrightarrow{AM_2}}{\overrightarrow{AO}}=\frac{AM_2}{AO}=\frac{8}{5}\Rightarrow M_2\left(\frac{24}{5};\frac{17}{5};\frac{14}{5}\right)\)

+) Dễ thấy \(\widehat{AM_1M}\) là góc tù nên \(\Delta AM_1M\) luôn có \(AM>AM_1\)

Vậy MA min khi và chỉ khi \(M\equiv M_1\)

.......(làm tương tự ý trên để tìm M1 :3 )

5 tháng 1 2017

mk ko hiểu lắm b ạ

29 tháng 11 2019

26 tháng 4 2016

Ta có \(y'=3\left(x^2-m\right)\Rightarrow y'=0\Leftrightarrow x^2=m\)

Hàm số có 2 cực trị khi và chỉ khi \(m>0\). Khi đó tọa độ 2 điểm A, B là :

\(A\left(\sqrt{m}'-2m\sqrt{m}\right);B\left(-\sqrt{m};2m\sqrt{m}+2\right)\)

Suy ra \(\overrightarrow{AB}=\left(-2\sqrt{m};4m\sqrt{m}\right)\Rightarrow\overrightarrow{n}\left(2m;1\right)\) là vecto pháp tuyến của AB

Phương trình AB : 2mx + y -2 = 0

Suy ra \(d\left(I,AB\right)=\frac{\left|2m-1\right|}{\sqrt{1-4m^2}},AB=2\sqrt{m}.\sqrt{1+4m^2}\)

Do đó \(S_{\Delta IAB}=\frac{1}{2}.AB.d\left(I,AB\right)=\sqrt{m}\left|2m-1\right|\)

Mà \(S_{\Delta IAB}=\sqrt{18}\Rightarrow\sqrt{m}\left|2m-1\right|=\sqrt{18}\Rightarrow4m^3-4m^2+m-18=0\Leftrightarrow m=2\)

Vậy m = 2 là giá trị cần tìm

27 tháng 5 2017

Hình giải tích trong không gian

Hình giải tích trong không gian