Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(V=\frac{1}{3}SA.\frac{1}{2}AB.BC=\frac{1}{6}.a.a.2a=\frac{a^3}{3}\)
2.
\(V=\frac{1}{3}SA.S_{ABC}=\frac{1}{3}.2a\sqrt{3}.\frac{a^2\sqrt{3}}{4}=\frac{a^3}{2}\)
P/s: chóp này là chóp "có đáy là tam giác đều" chứ không phải "chóp tam giác đều"
Hai loại này khác xa nhau đấy, ko lộn xộn nhầm lẫn được đâu
3.
Câu này đề sai
\(SA\perp\left(ABCD\right)\Rightarrow SA\perp AC\Rightarrow\Delta SAC\) vuông tại A
\(\Rightarrow SC>SA\) (cạnh huyền luôn lớn hơn cạnh góc vuông)
Do đó đề cho \(SA=SC\) là vô lý
4.
\(AC=BD=\sqrt{AB^2+AD^2}=2a\)
\(\widehat{SCA}=60^0\Rightarrow SA=SC.tan60^0=2a\sqrt{3}\)
\(V=\frac{1}{3}SA.AB.AD=\frac{1}{3}.2a\sqrt{3}.a.a\sqrt{3}=2a^3\)
Lời giải:
a)
Kẻ \(AH\perp CD\). Do tam giác $ACD$ cân tại $A$ nên $H$ là trung điểm của $CD$.
Tam giác $BCD$ có $BC=BD$ nên là tam giác cân, do đó \(BH\perp CD\)
Xét thấy \(\left\{\begin{matrix} AH\perp CD\\ BH\perp CD\end{matrix}\right.\Rightarrow (AHB)\perp CD\Rightarrow AB\perp CD\)
b)
Có \(\left\{\begin{matrix} AH\perp CD\\ AH\perp BH\end{matrix}\right.\Rightarrow AH\perp (BCD)\) hay $AH$ là đường cao hạ từ $A$ của tứ diện $ABCD$
Tam giác \(ACD\) có \(AC^2+AD^2=CD^2\Rightarrow \triangle ACD\) vuông tại $A$
\(\Rightarrow AH=CH=HD=\frac{CD}{2}=a\)
Ta cũng chứng minh được tam giác $BCD$ vuông tại $B$
Do đó, \(V_{ABCD}=\frac{1}{3}.AH.S_{BCD}=\frac{1}{3}.a.\frac{\sqrt{2}a.\sqrt{2}a}{2}=\frac{a^3}{3}\)