Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
+) Từ giả thiết ta có:
- IJ là đường trung bình của tam giác ABC nên:
- EF là đường trung bình của tam giác ABD nên:
- Suy ra: tứ giác IJEF là hình bình hành (1)
- Lại có: IF là đường trung bình của tam giác ACD nên:
- Từ (1) và (2) suy ra: tứ giác IJEF là hình thoi.
⇒ IE ⊥ JF (tính chất hai đường chéo của hình thoi).
⇒ Do đó, góc giữa hai đường thẳng IE và JF là: 90°.
Đáp án C
Qua M vẽ đường thẳng song song với AB cắt AC tại P và vẽ đường thẳng song song với CD cắt BD tại Q. Ta có mp (MNPQ) song song với cả AB và CD. Từ đó
Áp dụng tính chất đường trung bình trong tam giác (do M, N là các trung điểm) ta suy ra được MP = MQ = NP = a hay tứ giác MPNQ là hình thoi.
Tính được
Ta có N là trung điểm của BC
Suy ra A B → + A C → = 2 A N →
Lại có: A D → = 2 A Q → (Q là trung điểm của AD)
Do đó A B → + A C → + A D → = 2 A N → + 2 A Q → = 2 A N → + A Q → (1)
Tạ lại có G là trọng tâm của tứ diện ABCD nên G là trung điểm của NQ (tính chất trọng tâm của tứ diện) ⇒ A N → + A Q → = 2 A G → (2)
Từ (1) và (2) suy ra A B → + A C → + A D → = 4 A G → .
Đáp án A
b1: cho hình hộp ABCDA'B'C'D' có tất cả các mặt đều là hinh fthoi cạnh a. góc BAA'= góc BAD = góc DAA' = 60 độ. tính độ dài AC
b2: cho tứ diện ABCD có CD=1/2 AB. I,J,K lần lượt là trung điểm của BC,AC,BD. biết JK=5/6AB. tính góc giữa CD với ỊJ và AB
a) Chú ý rằng I, J, K thẳng hàng vì chúng cùng thuộc giao tuyến của hai mặt phẳng (CBD) và (C'B'D')
b) 4. Vì 4 điểm không đồng phẳng sẽ tạo nên 1 tứ diện => có 4 mặt
- Gọi M, N lần lượt là trung điểm AC, BC.
+) Tam giác ACD có MJ là đường trung bình của tam giác nên :
+) Tam giác BCD có NI là đường trung bình của tam giác nên:
Tương tự, ta có:
Mà theo giả thiết: AB = CD = a (4)
Từ (1), (2), (3) và (4) suy ra:
Do đó, tứ giác MJNI là hình thoi ( tính chất hình thoi).
- Gọi O là giao điểm của MN và IJ, ta có:
- Xét ΔMIO vuông tại O, ta có: