Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong toán học, định lý Pytago (còn gọi là Pythagorean theorem theo tiếng Anh) là một liên hệ căn bản trong hình học Euclid giữa ba cạnh của một tam giác vuông. Định lý phát biểu rằng bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh còn lại. Định lý có thể viết thành một phương trình liên hệ độ dài của các cạnh là a, b và c, thường gọi là "công thức Pytago":[1]
{\displaystyle a^{2}+b^{2}=c^{2},}
với c là độ dài cạnh huyền và a và b là độ dài hai cạnh góc vuông hay còn gọi là cạnh kề.
Mặc dù những hiểu biết về mối liên hệ này đã được biết trước thời của ông,[2][3] định lý được đặt tên theo nhà toán học Hy Lạp cổ đại Pythagoras (k. 570–495 BC) khi - với những tư liệu lịch sử đã ghi lại - ông được coi là người đầu tiên chứng minh được định lý này.[4][5][6] Có một số chứng cứ cho thấy các nhà toán học Babylon đã hiểu về công thức này, mặc dù có ít tư liệu cho thấy họ đã sử dụng nó trong khuôn khổ của toán học.[7][8] Các nhà toán học khu vực Lưỡng Hà, Ấn Độ và Trung Quốc cũng đều tự khám phá ra định lý này và trong một số nơi, họ đã đưa ra chứng minh cho một vài trường hợp đặc biệt.
Kiểm tra mà bạn vẫn có thời gian đưa câu hỏi ư! Bái phục mà thi j vậy bn?
x3 - 5x2 + x - 5 = (x3 - 5x2) + (x - 5) = x2(x - 5) + (x - 5) = (x - 5)(x2 + 1)
cho mk hỏi rút gọn bt nay nhé A= 1phần x+1 trừ x-1phân x cộng x+2 phần x^2 +x
TL :
Teencode (hay ngôn ngữ "xì tin") là một thuật ngữ chỉ kiểu chữ viết tắt tiếng Việt của giới trẻ tại Việt Nam. Teencode từng rất thịnh hành vào những năm 2007 - 2012 trên Internet. Chủ yếu dùng để giao tiếp với nhau trên mạng hoặc trong thư từ, mà không muốn để người khác biết nội dung, ở đây là giáo viên, phụ huynh và những người lớn khác. Thậm chí mỗi nhóm trẻ lại có cách sáng tạo riêng để tạo sự đặc trưng khác biệt với những nhóm còn lại.
\(2\left(x-1\right)^2-4\left(3+x^2\right)+2x\left(x-5\right)\)
\(2.x^2-2.x.1+1^2-12-4x^2+2x^2-10x\)
\(2x^2-2x+1-12-4x^2+2x^2-10x\)
\(-12x-11\)
\(\frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{d+a}{d+a+b}>2\)
Ta có :
\(\frac{a+b}{a+b+c}>\frac{a+b}{a+b+c+d}\) ; \(\frac{b+c}{b+c+d}>\frac{b+c}{a+b+c+d}\)
\(\frac{c+d}{c+d+a}>\frac{c+d}{a+b+c+d}\) ; \(\frac{d+a}{d+a+b}>\frac{d+a}{a+b+c+d}\)
(Những bất đẳng thức này có được là vào tính chất của phân số : Trong hai phân số có cùng tử số thì phân số nào có mẫu bé hơn thì lớn hơn và ngược lại)
Cộng tùng vế của các bất đẳng thức ta được:
\(\frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{a+d}{d+a+b}>\frac{2\left(a+c+c+d\right)}{a+b+c+d}\)
\(\Leftrightarrow dpcm\)
TK MK nka !!! Mà bạn ở đâu z ?
troll người à ???