Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : (a+b)/(a+b+c)<(a+b)/(a+b+c+d) ; (b+c)/(b+c+d)<(b+c)/(a+b+c+d) ; (c+d)/(c+d+a)>(c+d)(a+b+c+d) ; (a+d)/(a+b+d)>(a+d)(a+b+c+d)
Cộng 4 bất đẳng thức trên rồi rút gọn vế phải sẽ ra kết quả như đề bài
Trên trường tui không nghĩ ra về nhà mới phát hiên ra được
Cho mk hỏi bạn TMDuc va TNVuong thi cùng trường à. Sao lại có bài chung thế.
Không ý t nói là nếu \(\hept{\begin{cases}a^2=0,5\\b^2=0,5\\c^2=2\end{cases}}\)
Thì \(a\left(a-1\right)2=\sqrt{0,5}\left(\sqrt{0,5}-1\right)2=-0,414\ge0\)là sai ấy
Cho a,b,c là các số thực dương thoả mãn \(a^2+b^2+c^2=3\) . Chứng minh rằng:
\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}>3\)
Ta thấy 0 < a,b,c < 2
Ta có:
\(\frac{1}{2-a}\ge\frac{a^2+1}{2}\) ⇔ a( a−1)2 \(\ge\)0
Tương tự với các cái tương tự, ta được:
\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge\frac{a^2+1+b^2+1+c^2+1}{2}=3\left(\text{đ}pcm\right)\)
Dấu = khi a=b=c=1
đúng không ?
\(bdt\Leftrightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{a+d}+\frac{d-a}{a+b}\ge0\)
\(\Leftrightarrow\left(\frac{a-b}{b+c}+1\right)+\left(\frac{b-c}{c+d}+1\right)+\left(\frac{c-d}{d+a}+1\right)+\left(\frac{d-a}{a+b}+1\right)\ge4\)
\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{a+c}{d+a}+\frac{b+d}{a+b}\ge4\)
\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\)(*)
Theo Cauchy-Schwarz:
\(\frac{1}{b+c}+\frac{1}{d+a}\ge\frac{4}{a+b+c+d};\frac{1}{c+d}+\frac{1}{a+b}\ge\frac{4}{a+b+c+d}\)
Khi đó:\(\left(\cdot\right)\ge\left(a+c\right).\frac{4}{a+b+c+d}+\left(b+d\right).\frac{4}{a+b+c+d}=4\)
\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)
\(\frac{d}{a+b+d}>\frac{d}{a+b+c+d}\)
\(A=\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
\(A>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=1\)
\(A>1\)
Áp dụng BĐT Svác - xơ.
\(F=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\)
\(=\frac{a^2}{ba+ca}+\frac{b^2}{cb+db}+\frac{c^2}{dc+ac}+\frac{d^2}{ad+bd}\)
\(\ge\frac{\left(a+b+c+d\right)^2}{ba+ca+bd+db+dc+ac+ad+bd}\)(1)
Xét: \(\left(a+b+c+d\right)^2-2\left(ba+ca+bd+db+dc+ac+ad+bd\right)\)
\(=a^2+b^2+c^2+d^2-2bd-2ac\)
\(=\left(a-c\right)^2+\left(b-d\right)^2\ge0\)
=> \(\left(a+b+c+d\right)^2\ge2\left(ba+ca+bd+db+dc+ac+ad+bd\right)\)
=> \(\frac{\left(a+b+c+d\right)^2}{ba+ca+bd+db+dc+ac+ad+bd}\ge2\)(2)
Từ ( 1); (2) => \(F\ge2\)
Dấu "=" xảy ra <=> a = b = c = d.
Để \(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}\ge\frac{a-d}{a+b}\)
\(\Leftrightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)
\(\Leftrightarrow\frac{a-b}{b+c}+1+\frac{b-c}{c+d}+1+\frac{c-d}{d+a}+1+\frac{d-a}{a+b}+1\ge4\)
\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{d+a}+\frac{d+b}{a+b}\ge4\)
\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\)(Cần phải chứng minh)
Ta có : \(\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\ge\left(a+c\right).\frac{4}{a+b+c+d}\left(1\right)\)(Áp dụng BĐT Cô-si)
\(\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge\left(b+d\right).\frac{4}{a+b+c+d}\left(2\right)\)(Áp dụng BĐT Cô-si)
Từ (1) và (2) \(\Rightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\)
\(\ge\frac{4\left(a+c\right)}{a+b+c+d}+\frac{4\left(b+d\right)}{a+b+c+d}=4\)(Điều phải chứng minh)
Thế chú học có hơn ai không mà sao chú nói vậy đấy ngon làm đi
\(\frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{d+a}{d+a+b}>2\)
Ta có :
\(\frac{a+b}{a+b+c}>\frac{a+b}{a+b+c+d}\) ; \(\frac{b+c}{b+c+d}>\frac{b+c}{a+b+c+d}\)
\(\frac{c+d}{c+d+a}>\frac{c+d}{a+b+c+d}\) ; \(\frac{d+a}{d+a+b}>\frac{d+a}{a+b+c+d}\)
(Những bất đẳng thức này có được là vào tính chất của phân số : Trong hai phân số có cùng tử số thì phân số nào có mẫu bé hơn thì lớn hơn và ngược lại)
Cộng tùng vế của các bất đẳng thức ta được:
\(\frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{a+d}{d+a+b}>\frac{2\left(a+c+c+d\right)}{a+b+c+d}\)
\(\Leftrightarrow dpcm\)
TK MK nka !!! Mà bạn ở đâu z ?
Cho minh hoi ban Thanh Pho nao vay