K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2017

Ta có : (a+b)/(a+b+c)<(a+b)/(a+b+c+d) ; (b+c)/(b+c+d)<(b+c)/(a+b+c+d) ; (c+d)/(c+d+a)>(c+d)(a+b+c+d) ; (a+d)/(a+b+d)>(a+d)(a+b+c+d)

Cộng 4 bất đẳng thức trên rồi rút gọn vế phải sẽ ra kết quả như đề bài

Trên trường tui không nghĩ ra về nhà mới phát hiên ra được

11 tháng 5 2017

Cho mk hỏi bạn TMDuc va TNVuong thi cùng trường à. Sao lại có bài chung thế.

11 tháng 5 2017

\(\frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{d+a}{d+a+b}>2\)

Ta có :

\(\frac{a+b}{a+b+c}>\frac{a+b}{a+b+c+d}\)  ;   \(\frac{b+c}{b+c+d}>\frac{b+c}{a+b+c+d}\)

\(\frac{c+d}{c+d+a}>\frac{c+d}{a+b+c+d}\)  ;  \(\frac{d+a}{d+a+b}>\frac{d+a}{a+b+c+d}\)

(Những bất đẳng thức này có được là vào tính chất của phân số : Trong hai phân số có cùng tử số thì phân số nào có mẫu bé hơn thì lớn hơn và ngược lại)

Cộng tùng vế của các bất đẳng thức ta được:

\(\frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{a+d}{d+a+b}>\frac{2\left(a+c+c+d\right)}{a+b+c+d}\)

\(\Leftrightarrow dpcm\)

TK MK nka !!! Mà bạn ở đâu z ?

11 tháng 5 2017

Cho minh hoi ban Thanh Pho nao vay

3 tháng 4 2019

Để \(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}\ge\frac{a-d}{a+b}\)

\(\Leftrightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)

\(\Leftrightarrow\frac{a-b}{b+c}+1+\frac{b-c}{c+d}+1+\frac{c-d}{d+a}+1+\frac{d-a}{a+b}+1\ge4\)

\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{d+a}+\frac{d+b}{a+b}\ge4\)

\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\)(Cần phải chứng minh)

Ta có : \(\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\ge\left(a+c\right).\frac{4}{a+b+c+d}\left(1\right)\)(Áp dụng BĐT Cô-si)

\(\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge\left(b+d\right).\frac{4}{a+b+c+d}\left(2\right)\)(Áp dụng BĐT Cô-si)

Từ (1) và (2) \(\Rightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\)

\(\ge\frac{4\left(a+c\right)}{a+b+c+d}+\frac{4\left(b+d\right)}{a+b+c+d}=4\)(Điều phải chứng minh)

7 tháng 4 2019

Thank bạn Fire Sky very much ☺☺🙂☺☺!!

DD
31 tháng 5 2021

\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)

\(>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)

\(=\frac{a+b+c+d}{a+b+c+d}=1\).

\(\frac{a}{a+b+c}+\frac{c}{c+d+a}< \frac{a}{a+c}+\frac{c}{c+a}=\frac{a+c}{c+a}=1\)

\(\frac{b}{b+c+d}+\frac{d}{d+a+b}< \frac{b}{b+d}+\frac{d}{d+b}=\frac{b+d}{d+b}=1\)

Suy ra đpcm. 

5 tháng 9 2017

Ta có :

\(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}\ge\frac{a-d}{a+b}\) (1)

\(\Leftrightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)

\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{d+a}+\frac{d+b}{a+b}\ge4\)( Cộng mỗi phân số vs 1 )

\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\) (2)

Với a ,b ,c ,d là các số dương , áp dụng BĐT Svacsơ , ta có :

\(\hept{\begin{cases}\frac{1}{b+c}+\frac{1}{d+a}\ge\frac{4}{a+b+c+d}\\\frac{1}{c+d}+\frac{1}{a+b}\ge\frac{4}{a+b+c+d}\end{cases}}\)

Suy ra : \(\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge\frac{4\left(a+c\right)+4\left(b+d\right)}{a+b+c+d}\)

\(\Leftrightarrow\left(2\right)\)\(\Leftrightarrow\left(1\right)\)( Điều cần CM )

26 tháng 3 2019

\(Để\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)

Thì \(\frac{a-b}{b+c}+1+\frac{b-c}{c+d}+1+\frac{c-d}{d+a}+1+\frac{d-a}{a+b}+1\ge4\)

\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{d+a}+\frac{d+b}{a+b}\ge4\)

\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\)(Cần phải chứng minh)

Ta có : \(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\)

\(\ge\left(a+c\right)\left(\frac{4}{a+b+c+d}\right)+\left(b+d\right)\left(\frac{4}{a+b+c+d}\right)=4\)(Áp dụng Cô-si dạng phân thức)

\(\Rightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)(Đpcm)

   Học tốt ~~