K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

ko hiểu

16 tháng 8 2017

a+b=1 => a=1 b=0

a mu 3 =1     b mu 3 = 0

3ab=310

310+0+1=311 

k mink nha

a: \(=2x^2+6x\)

b: \(=3x^2y-3y^2\)

c: \(=3x^2+3xy-2x-2y\)

15 tháng 8 2016

= (a+b)(a2-ab+b2) + 3ab((a+b)2-2ab) + 6a2b2(a+b)

Thay a+b = 1 vài biểu tức trên ta có:

a2-ab+b2+ 3ab(1-2ab)+6a2b2=a2-ab+b2+3ab-6a2b2+6a2b2

                                          = a2 + 2ab + b2

                                                        = (a+b)2

                                                        = 1

22 tháng 12 2018

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1

16 tháng 8 2016

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+2ab+b^2-2ab\right)+6a^2b^2\)

\(=\left(a^2+2ab+b^2-3ab\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)

\(=\left(a+b\right)^2-3ab+3ab\times\left(-2ab\right)+6a^2b^2\)

\(=-3ab-6a^2b^2+6a^2b^2\)

= - 3ab

15 tháng 8 2016

HELP MEEEEEEEEEEEEEEEEEEEEEEEEEEEE!

15 tháng 8 2016

\(\text{ nhìn thì thiệt là rắc rối nhưng bạn chỉ để ý 1chút là được thui.}\)

\(\text{M=1.chi tiết cách giải nha: }\)

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)vì\left(a+b=1\right)\)

\(M=a^3+b^3+\left(3ab\left(a^2+b^2\right)+6a^2b^2\right)\)

\(M=a^3+b^3+3ab\left(a^2+b^2+2ab\right)\)

\(M=a^3+b^3+3ab\left(a+b\right)^2\)

\(M=\left(a^3+b^3\right)+3ab\)

\(M=\left(a+b\right)\left(a^2-2ab+b^2\right)+3ab\)

\(M=a^2-ab+b^2+3ab\)

\(M=a^2+b^2+2ab=\left(a+b\right)^2=1^2=1\)

15 tháng 8 2016

đồ giở hơi

6 tháng 3 2017

Kiểm tra mà bạn vẫn có thời gian đưa câu hỏi ư! Bái phục mà thi j vậy bn?

13 tháng 8 2016

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2+ab+b^2\right)+3a^3b+3ab^3+6a^2b^2\)

\(=a^2+ab+b^2+3ab\left(a^2+b^2+2ab\right)\)

\(=a^2+ab+b^2+3ab\left(a+b\right)^2\)

\(=a^2+2ab+b^2+2ab\)

\(= \left(a+b\right)^2+2ab=2ab\)

ta co 
M = a³ + b³ + 3ab(a² + b²) + 6a²b²(a + b) 

= (a+b)(a² - ab + b²) + 3ab[(a+b)² - 2ab] + 6a²b²(a +b ) 

= (a+b) [(a +b)² - 3ab] + 3ab[(a+b)² - 2ab] + 6a²b²(a +b ) 

_______thay a + b = 1 __________________: 
M = 1.(1 - 3ab) + 3ab(1 - 2ab) + 6a²b² 

M = 1 - 3ab + 3ab - 6a²b² + 6a² b² = 1

3 tháng 7 2021

Ta có:a+b=1
<=>(a+b)^3=1^3
<=>a^3+3a^2.b+3a.b^2+b^3=1
<=>a^3+b^3+3ab(a+b)=1
mà a+b=1=>a^3+b^3+3ab=1=>a^3+b^3=1-3ab(dpcm)

3 tháng 7 2021

Hok tot nhaa~