K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2020

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{2b+3d}\)

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\frac{2a+3c}{2b+3d}=\frac{a+c}{b+d}\Rightarrow\left(2a+3c\right)\left(b+d\right)=\left(a+c\right)\left(2b+3d\right)\left(dpcm\right)\)

5 tháng 2 2022

đặt a/b =c/d =k 

=> a=bm , c=dm 

=> 2a+3c/2b+3d =2bm+3bm/ 2b +3d = m.(2d+3d)/2d+3d =m (1)

=> 2a-3c/2d-3d=2bm-3dm /2b -3d =m.(2b-3d)/2b-3d= m (2)

Từ (1) và (2) => 2a+3c/2b+3d =2a-3c/2b-3d 

câu 2 tương tự nha

3 tháng 4 2023

bạn khôi đặt là k mà lại khi m

 

6 tháng 7 2016

sai đề r, a/3 là s, phải a/b chứ, nếu là a/b thì lm ntnày:

Lấy a/b=c/d=k(k thuộc N*) 
=>a=bk ; c=dk 
Xét : + 2a-3c/2b-3d=2bk-3dk/2b-3d= k^2.(2b-3d)/2b-3d=k^2 (1) 
       + 2a+3c/2b+3d=2bk+3dk/2b+3d= k^2.(2b+3d)/2b+3d=k^2 (2) 
(1);(2)=> 2a-3c/2b-3d=2a+3c/2b+3d(đpcm)

Vậy 2a-3c/2b-3d=2a+3c/2b+3d

18 tháng 7 2015

đặt \(\frac{a}{b}=\frac{c}{d}=k\left(1\right)\)

\(\Rightarrow a=bk\) và c = dk

\(\Rightarrow\)2a + 3c = 2bk - 3dk =k . (2b - 3d)

\(\Rightarrow\)\(\frac{2a+3c}{2b+3d}=k\frac{2b+3d}{2b+3d}=k\)

\(\Rightarrow\)\(\frac{2a+3c}{2b+3d}=k\left(2\right)\)

từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2a+3c}{2b+3d}dpcm\)

 

15 tháng 8 2023

a) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\left(b+d\right)c=\left(a+c\right)d\)

\(\Rightarrow dpcm\)

b) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{2a}{2b}=\dfrac{c}{d}=\dfrac{2a+c}{2b+d}=\dfrac{2a-c}{2b-d}\)

\(\Rightarrow\left(2b-d\right)\left(2a+c\right)=\left(2a-c\right)\left(2b+d\right)\)

\(\Rightarrow dpcm\)

c) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}=\dfrac{3a}{3b}=\dfrac{5c}{5d}=\dfrac{3a+5c}{3b+5d}=\dfrac{a-3c}{b-3d}\)

\(\Rightarrow\left(b-3d\right)\left(b-3d\right)=\left(3b+5d\right)\left(a-3c\right)\)

\(\Rightarrow dpcm\)

15 tháng 8 2023

Đính chính câu c

\(\Rightarrow\left(3a+5c\right)\left(b-3d\right)=\left(3b+5d\right)\left(a-3c\right)\)

25 tháng 10 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)

a) => \(\frac{2a+c}{2b+d}=\frac{2kb+kd}{2b+d}=\frac{k\left(2b+d\right)}{2b+d}=k\) (1)

\(\frac{2a-3c}{2b-3d}=\frac{2kb-3kd}{2b-3d}=\frac{k\left(2b-3d\right)}{2b-3d}=k\) (2)

Từ (1) và (2) => \(\frac{2a+c}{2b+d}=\frac{2a-3c}{2b-3d}\)

b) => \(\frac{ab}{cd}=\frac{kbb}{kdd}=\frac{b^2}{d^2}\) (1)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)

bạn ghi lại đề đi bạn

18 tháng 1 2022

ghi rõ thế r còn j

 

22 tháng 4 2018

a, ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}\)

áp dụng tính chất dă y tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}=\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\)

\(\Rightarrow\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\Rightarrow\dfrac{a+2b}{2a-b}=\dfrac{c+2d}{2c-d}\) (ĐPCM)

22 tháng 4 2018

b, ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}\)

áp dụng tính chất dă tỉ số bằng nhau ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}=\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)

\(\Rightarrow\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)

\(\Rightarrow\left(a+3c\right)\left(b-d\right)=\left(b+3d\right)\left(a-c\right)\) (ĐPCM)