K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2017

dtytd

Câu 1 :Cho tỉ lệ thức a/b=c/d với b,c,d khác 0và c khác -dCmr: a+b/b=c+d/dCâu 2: cho tỉ lệ thức a/b=c/d với b,c,d khác 0 và a khác -b,c khác -d.Cmr: a/a+b=c/c+dCâu 3: cho a+b/a-b=c+d/c-d(a,b,c,d khác 0 và a khác b, c khác âm dương c)Cmr a/b=c/dCâu 4: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 Cmr ac/bd=a^2+c^2 /b^2+d^2Câu 5: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và c khác d Cmr: (a-b)^2/(c-d)^2=ab/cdCâu 6: cho tỉ lệ thức a/b=c/d...
Đọc tiếp

Câu 1 :Cho tỉ lệ thức a/b=c/d với b,c,d khác 0và c khác -d

Cmr: a+b/b=c+d/d

Câu 2: cho tỉ lệ thức a/b=c/d với b,c,d khác 0 và a khác -b,c khác -d.

Cmr: a/a+b=c/c+d

Câu 3: cho a+b/a-b=c+d/c-d(a,b,c,d khác 0 và a khác b, c khác âm dương c)

Cmr a/b=c/d

Câu 4: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 

Cmr ac/bd=a^2+c^2 /b^2+d^2

Câu 5: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và c khác d 

Cmr: (a-b)^2/(c-d)^2=ab/cd

Câu 6: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và khác-d

Cmr: (a+b)^2014/(c+d)^2014=a^2014+b^2014/c^1014+d^2014

Câu 7:cho a/c=c/d với a,b,c khác 0 

Cmr a/b=a^2+c^2/b^2+d^2

Câu 8: cho a/c=c/d với a,b,c khác 0

Cmr b-a/a=b^2-a^2/a^2+c^2

Câu 9:cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và a khác âm dương 5/3b; khác âm dương 5/3d khác 0

Cmr: các tỉ lệ thức sau: 3a+5b/3a-5b=3c+5d/3c-5d

Câu 10: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0

Cmr: 7a^2+5ac/7b^2-5ac=7a^2+5bd/7b^2-5bd

3
22 tháng 11 2018

Câu 1 

Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)

=> ĐPCM

Câu 2

Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)

=> ĐPCM

Câu 3

22 tháng 11 2018

Câu 3

Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)

=> ĐPCM

Câu 4 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)

Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ (1) và (2) => ĐPCM

8 tháng 11 2017

Đề \(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}\)\(\Leftrightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow\frac{1}{a}=\frac{1}{c}\Rightarrow a=c\Leftrightarrow ab=bc\)

\(\Rightarrow\frac{a}{b}=\frac{c}{b}\)

Đề sai hả bạn ?

15 tháng 12 2017

Có : ab/bc = b/c ( ab và bc có gạch ngang trên đầu )

=> 10a+b/10b+c = b/c

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

10a+b/10b+c=b/c=10a+b-b/10b+c-c = 10a/10b = a/b

=> b/c=a/b => b^2 = ac

=> ĐPCM

k mk nha

5 tháng 5 2019

tc:ab/bc=b/c 

10a+b/10b+c=b/c

ap dung tinh chat day ti so bang nhau to co

10a+b/10b+c=b/c=10a+b-b/10b+c-c=10a/10b=a/b

suy rab/c=a/b

suy ra b^2=ac

18 tháng 11 2019

Từ giả thiết \(c\ne0\) và ab, bc là các số có hai chữ số nên a, b, c > 0. Hoán vị các trung tỉ và áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{ab}{bc}=\frac{a+c}{b+c}=\frac{ab-\left(a+b\right)}{bc-\left(b+c\right)}=\frac{9a}{9b}=\frac{a}{b}=\frac{\left(a+b\right)-a}{\left(b+c\right)-b}=\frac{b}{c}\)

\(\Rightarrow\frac{ab}{b}=\frac{bc}{c}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}\)

18 tháng 11 2019

Ta có:

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}.\)

\(\Rightarrow\frac{10a+b}{a+b}=\frac{10b+c}{b+c}.\)

\(\Rightarrow\frac{a+b+9a}{a+b}=\frac{b+c+9b}{b+c}\)

\(\Rightarrow\frac{a+b}{a+b}+\frac{9a}{a+b}=\frac{b+c}{b+c}+\frac{9b}{b+c}\)

\(\Rightarrow1+\frac{9a}{a+b}=1+\frac{9b}{b+c}\)

\(\Rightarrow\frac{9a}{a+b}=\frac{9b}{b+c}.\)

\(\Rightarrow\frac{a}{a+b}=\frac{b}{b+c}\)

\(\Rightarrow a.\left(b+c\right)=b.\left(a+b\right)\)

\(\Rightarrow ab+ac=ab+b^2\)

\(\Rightarrow ac=b^2\)

\(\Rightarrow ac=b.b\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}\left(đpcm\right).\)

Chúc bạn học tốt!

7 tháng 1 2020

Câu hỏi của Best Friend Forever - Toán lớp 7 - Học toán với OnlineMath

26 tháng 7 2016

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dya4 tỉ số bằng nhau:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a-b}{a}=\frac{c-d}{c}\left(đpcm\right)\)

ab =cd 

⇒ac =bd 

Áp dụng tính chất dãy tỉ số bằng nhau:

ac =bd =a−bc−d 

⇒ac =a−bc−d ⇒a−ba =c−dc (đpcm)

7 tháng 1 2016


d) a/b = c/d => ad = bc => b/a = d/c 
=>b/a - 1 = d/c - 1 
b/a - a/a = d/c - c/c 
(b - a)/b = (d - c)/c