\(\frac{ab}{a+b}=\frac{bc}{b+c}\). CM tỉ lệ thức \(\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2019

Từ giả thiết \(c\ne0\) và ab, bc là các số có hai chữ số nên a, b, c > 0. Hoán vị các trung tỉ và áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{ab}{bc}=\frac{a+c}{b+c}=\frac{ab-\left(a+b\right)}{bc-\left(b+c\right)}=\frac{9a}{9b}=\frac{a}{b}=\frac{\left(a+b\right)-a}{\left(b+c\right)-b}=\frac{b}{c}\)

\(\Rightarrow\frac{ab}{b}=\frac{bc}{c}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}\)

18 tháng 11 2019

Ta có:

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}.\)

\(\Rightarrow\frac{10a+b}{a+b}=\frac{10b+c}{b+c}.\)

\(\Rightarrow\frac{a+b+9a}{a+b}=\frac{b+c+9b}{b+c}\)

\(\Rightarrow\frac{a+b}{a+b}+\frac{9a}{a+b}=\frac{b+c}{b+c}+\frac{9b}{b+c}\)

\(\Rightarrow1+\frac{9a}{a+b}=1+\frac{9b}{b+c}\)

\(\Rightarrow\frac{9a}{a+b}=\frac{9b}{b+c}.\)

\(\Rightarrow\frac{a}{a+b}=\frac{b}{b+c}\)

\(\Rightarrow a.\left(b+c\right)=b.\left(a+b\right)\)

\(\Rightarrow ab+ac=ab+b^2\)

\(\Rightarrow ac=b^2\)

\(\Rightarrow ac=b.b\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}\left(đpcm\right).\)

Chúc bạn học tốt!

8 tháng 11 2017

Đề \(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}\)\(\Leftrightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow\frac{1}{a}=\frac{1}{c}\Rightarrow a=c\Leftrightarrow ab=bc\)

\(\Rightarrow\frac{a}{b}=\frac{c}{b}\)

Đề sai hả bạn ?

24 tháng 7 2019

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\)

\(\Leftrightarrow\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)

\(\Leftrightarrow\frac{a+b+9a}{a+b}=\frac{b+c+9b}{b+c}\)

\(\Leftrightarrow1+\frac{9a}{a+b}=1+\frac{9b}{b+c}\)

\(\Leftrightarrow\frac{9a}{a+b}=\frac{9b}{b+c}\)

\(\Leftrightarrow\frac{a}{a+b}=\frac{b}{b+c}\)

\(\Leftrightarrow a\left(b+c\right)=b\left(a+b\right)\)

\(\Leftrightarrow ab+ac=ab+b^2\)

\(\Leftrightarrow ac=b^2\)

\(\Leftrightarrow\frac{a}{b}=\frac{b}{c}\)

Ta có:

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\Rightarrow\frac{\overline{ab}}{\overline{bc}}=\frac{a+b}{b+c}=\frac{\overline{ab}-\left(a+b\right)}{\overline{bc}-\left(b+c\right)}\)

\(=\frac{10a+b-a-b}{10b+c-b-c}=\frac{9a}{9b}=\frac{b}{a}\)

\(\frac{a+b}{b+c}=\frac{a}{b}=\frac{a+b-a}{b+c-b}=\frac{b}{c}\)

Vậy: \(\frac{a}{b}=\frac{b}{c}\left(b,c\ne0\right)\)

Bn ơi mk nghĩ đề phải là : giả thuyết \(c\ne0\)bn nhé.......

#kiseki no enzeru#

hok tốt

25 tháng 11 2018

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}=\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}=\frac{10a+b}{a+b}=\frac{10b+c}{b+c}=\frac{10a+11b+c}{a+2b+c}\)

\(\Rightarrow\frac{10a+b}{a+b}=\frac{10a+11b+c}{a+2b+c}\Rightarrow\left(10a+b\right).\left(a+2b+c\right)=\left(a+b\right).\left(10a+11b+c\right)\)

\(10a^2+20ab+10ac+ab+2b^2+bc=10a^2+11ab+ac+10ab+11b^2+bc\)

\(\Rightarrow9ac=9b^2\Rightarrow ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c}\left(đpcm\right)\)

p/s: bài này khó chơi lém, đoạn mk giản đơn hai vế ko hiểu ib vs mk :))

24 tháng 10 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) thì \(a=bk,c=dk\).

\(\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\\ \frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\)

Do đó: \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)

24 tháng 10 2016

thanks, bạn giúp mik nhiều lần rồi ^^^^ cảm ơn

a)\(\frac{ab}{cd}=\frac{bk.b}{dk.b}=\frac{b^2}{d^2}\left(1\right)\)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)

từ\(\left(1\right)\)\(\left(2\right)\)\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

https://bingbe.com/search?category=question&q=Cho%20t%E1%BB%89%20l%E1%BB%87%20th%E1%BB%A9c%20a%20%2Fb%20%3D%20c%20%2Fd%20.%C2%A0Ch%E1%BB%A9ng%20minh%20c%C3%B3%20t%E1%BB%89%20l%E1%BB%87%20th%E1%BB%A9c%20sau%20%3A%0A%0A(%20a%20%2B%20c%C2%A0)2%C2%A0%2F%20(%20b%20%2B%20d%20)2%C2%A0%3D%20a2%C2%A0%20%2B%C2%A0%C2%A0c2%C2%A0%2F%20b2%20%C2%A0%2B%20d%C2%A02%C2%A0%0A%0A(%20Gi%E1%BA%A3%20thi%E1%BA%BFt%20c%C3%A1c%20t%E1%BB%89%20s%E1%BB%91%20%C4%91%E1%BB%81u%20c%C3%B3%20ngh%C4%A9a%20)%C2%A0%0A%0A%C2%A0

Xem ở lick này nhé (mình gửi cho)

Học tốt!!!!!!!!!!!!!

28 tháng 7 2019

@@ chị linh Link dài vậy giải lun phải hơn không

18 tháng 9 2016

Khó quá! Mình chưa học tỉ lệ thức

5 tháng 10 2016
đặt x/4=y/7=k suy ra x=4k y=7k mặt khác xy=112 suy ra 4k.7k=112 k^2.(4.7)=112 k^2.28=112 k^2=4 k=2;-2 x/4=2 x=8 y/7=2 y=14 x/4=-2 x=-8 y/7=-2 y=-14 2/ ta có a/b=c/d suy ra ad=bc suy ra ab+ad=ab+bc a(b+d)=b(a+c) suy ra a/b=a+c/b+d 3/ ta có a/b=c/d suy ra b/a=d/c 1-b/a=1-d/c suy ra a-b/a=c-d/c
2 tháng 8 2016

Ta có:

\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

a) \(\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(1\right)\)

\(\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(2\right)\)

Từ (1) , (2) \(\Rightarrow\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)

b) \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\left(1\right)\)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) , (2) \(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

c) \(\left(\frac{a+b}{c+d}\right)^2=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2.\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\left(1\right)\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2\right)+1}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) , (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

9 tháng 11 2018

c) có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a^2}{^{c^2}}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)

   Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(2\right)\)

Từ (1) và (2) có \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)

các câu còn lại bạn tự làm đi! HI.......