Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: góc \(\hept{\begin{cases}^{ABH+BAH=90^o}\\^{EAC+BAH=90^o}\end{cases}}\)=> góc ABH = góc EAC
Xét tam giác ABH và tam giác CAK có:
AB=AC ( tam giác ABC cân tại A)
góc H = góc K (=90o)
góc ABH = góc KAC (c.m.t)
=> tam giác ABH = tam giác AKC (cạnh huyền - góc nhọn)
=> AH = CK (cặp cạnh tương ứng)
Ta lại có:+> AM là đường cao của tam giác vuông cân ABC => AM cũng là đường trung tuyến
=> AM=BM=MC (trung tuyến ứng với cạnh huyền)
+> \(\hept{\begin{cases}MAH+MEA=90^o\\MCK+KEC=90^o\end{cases}}\)mà góc MEA = góc KEC (đối đỉnh ) => góc MAH = góc MCK
Xét tam giác MAH và tam giác MCK có:
AM = MC (c.m.t)
góc MAH = góc MCK (c.m.t)
AH=CK (c.m.t)
=> hai tam giác trên bằng nhau (c.g.c) => HM = MK (cặp cạnh tương ứng) (đpcm)
Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ
góc ACB+ACE=180 độ
=> góc ABD=góc ACE
Xét tam giác ABD và tam giác ACE có
AB=AC (tam giác ABC cân tại A)
góc ABD=góc ACE (cmt)
BD=CE(gt)
=> tam giác ABD=tam giác ACE(c-g-c)
=> AD=AE(cạnh tương ứng)
Vậy tam giác ADE cân và cân tại A
b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E
Xét tam giác AMD và tam giác AME có:
AD=AE(tam giác ADE cân tại A)
góc D=góc E(cmt)
góc AMD=góc AME=90 độ
=> tam giác AMD=tam giác AME(ch-gn)
=> góc DAM=góc EAM(góc tương ứng)
Vậy AM là tia phân giác góc DAE
A B C D F 1 2 1 3
a, Xét \(\Delta ABD;\Delta EBD\) có:
\(\widehat{B_1}=\widehat{B_2}\) (do BD là p/g góc B)
BD chung
\(\widehat{BAD}=\widehat{BED}=90^0\)
\(\Rightarrow\Delta BAD=\Delta BED\left(CH-GN\right)\)
=> AB=EB => B nằm trên trung trực của AE
AD=ED => D nằm trên trung trực của AE
=> BD là trung trực của AE.
Vậy BD là trung trực của AE.
b, Xét \(\Delta ADF;\Delta EDC\) có:
\(\widehat{DAF}=\widehat{DEC}=90^0\)
AD=ED
\(\widehat{D_1}=\widehat{D_3}\) (đối đỉnh)
\(\Rightarrow\Delta ADF=\Delta EDC\left(g-c-g\right)\Rightarrow DF=DC\)
Vậy DF=DC
c, Ta có:
\(CA\perp BF\) => CA là đường cao xuất phát từ C của \(\Delta BCF\)
\(FE\perp BC\) => FE là đường cao xuất phát từ F của \(\Delta BCF\)
Mà D là giao điểm của CA và FE => D là trực tâm của tam giác BCF
=> \(BD\perp FC\). (1)
Mà BD là trung trực của AE \(\Rightarrow BD\perp AE\) (2)
Từ (1) và (2) => AE//FC
Vậy AE//FC