Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ
góc ACB+ACE=180 độ
=> góc ABD=góc ACE
Xét tam giác ABD và tam giác ACE có
AB=AC (tam giác ABC cân tại A)
góc ABD=góc ACE (cmt)
BD=CE(gt)
=> tam giác ABD=tam giác ACE(c-g-c)
=> AD=AE(cạnh tương ứng)
Vậy tam giác ADE cân và cân tại A
b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E
Xét tam giác AMD và tam giác AME có:
AD=AE(tam giác ADE cân tại A)
góc D=góc E(cmt)
góc AMD=góc AME=90 độ
=> tam giác AMD=tam giác AME(ch-gn)
=> góc DAM=góc EAM(góc tương ứng)
Vậy AM là tia phân giác góc DAE
Ta có: góc \(\hept{\begin{cases}^{ABH+BAH=90^o}\\^{EAC+BAH=90^o}\end{cases}}\)=> góc ABH = góc EAC
Xét tam giác ABH và tam giác CAK có:
AB=AC ( tam giác ABC cân tại A)
góc H = góc K (=90o)
góc ABH = góc KAC (c.m.t)
=> tam giác ABH = tam giác AKC (cạnh huyền - góc nhọn)
=> AH = CK (cặp cạnh tương ứng)
Ta lại có:+> AM là đường cao của tam giác vuông cân ABC => AM cũng là đường trung tuyến
=> AM=BM=MC (trung tuyến ứng với cạnh huyền)
+> \(\hept{\begin{cases}MAH+MEA=90^o\\MCK+KEC=90^o\end{cases}}\)mà góc MEA = góc KEC (đối đỉnh ) => góc MAH = góc MCK
Xét tam giác MAH và tam giác MCK có:
AM = MC (c.m.t)
góc MAH = góc MCK (c.m.t)
AH=CK (c.m.t)
=> hai tam giác trên bằng nhau (c.g.c) => HM = MK (cặp cạnh tương ứng) (đpcm)