\(\widehat{B}\)=90 độ, AM là trung tuyến, E \(\in\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2018

a) Xét tam giác ABM và tam giác ECM có :

AM = ME

\(\widehat{AMB}=\widehat{CME}\left(đđ\right)\)

BM = MC

\(\Rightarrow\) tam giác ABM = tam giác ECM ( c-g-c ) (đpcm)

b) Do tam giác ABM = tam giác ECM

\(\Rightarrow AB=CE\) (1)

Mà tam giác ABC vuông tại B

\(\Rightarrow AC>AB\) ( do cạnh AC là cạnh huyền ) (2)

Từ (1) và (2) \(\Rightarrow AC>CE\left(đpcm\right)\)

c) Xét tam giác ACE có : \(AC>CE\)

\(\Rightarrow\widehat{MAC}< \widehat{CEA}\left(3\right)\)

Mà tam giác ABM = tam giác ECM ( câu a )

\(\Rightarrow\widehat{BAM}=\widehat{CEA}\left(4\right)\)

Từ (3) và (4) \(\Rightarrow\widehat{BAM}>\widehat{MAC}\left(đpcm\right)\)

1) Cho \(\Delta ABC\) cân tại A, có AB = AC = 5cm, BC = 8cm. Kẻ \(AH\perp BC\) ( \(H\in BC\) ). a) C/m: HB = HC và \(\widehat{BAH}=\widehat{CAH}\) b) TÍnh AH. c) Gọi D và E là chân đường phân giác kẻ từ H đến AB. C/m: \(\Delta HDE\) cân. 2) Cho \(\Delta ABC\) có \(\widehat{B}\) = 90 độ, vẽ trung tuyến AM. Trên tia đối của tia MA lấy điểm E sao cho ME = AM. CMR: a) \(\Delta ABM=\Delta ECM\). b) AC > CE. c)...
Đọc tiếp

1) Cho \(\Delta ABC\) cân tại A, có AB = AC = 5cm, BC = 8cm. Kẻ \(AH\perp BC\) ( \(H\in BC\) ).

a) C/m: HB = HC và \(\widehat{BAH}=\widehat{CAH}\)

b) TÍnh AH.

c) Gọi D và E là chân đường phân giác kẻ từ H đến AB. C/m: \(\Delta HDE\) cân.

2) Cho \(\Delta ABC\) có \(\widehat{B}\) = 90 độ, vẽ trung tuyến AM. Trên tia đối của tia MA lấy điểm E sao cho ME = AM. CMR:

a) \(\Delta ABM=\Delta ECM\).

b) AC > CE.

c) \(\widehat{BAM}>\widehat{MAC.}\)

3) Cho góc nhọn \(\widehat{xOy}\). Gọi M là 1 điểm thuộc tia phân giác \(\widehat{xOy}\), kẻ \(MA\perp Ox\left(A\in Ox\right)\), \(MB\perp Oy\left(B\in Oy\right)\).

a) CMR: MA = MB và \(\Delta OAB\) cân.

b) Đường thẳng BM cắt Ox tại D, đường thẳng AM cắt Oy tại E. CMR: MD = ME.

c) C/m: \(OM\perp DE\)

" hép mê " giải nhanh nha, mai mình cần gấp rùi ! Tuy hơi dài nhưng các bạn lm từng bài một cx đc !huhu

1

Câu 1: 

a: Ta có:ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác và H là trung điểm của BC

hay \(\widehat{BAH}=\widehat{CAH}\) và HB=HC

b: HB=HC=BC/2=4(cm)

nên AH=3(cm)

c: Sửa đề; D và E là chân đường cao kẻ từ H xuống AB và AC

Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔAHD=ΔAHE

Suy ra: HD=HE

hay ΔHDE cân tại H

a: Xét tứ giác ABDC có

M là trung điểm của AD
M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: BA//DC

=>\(\widehat{BAM}=\widehat{CDM}\)

b: Ta có: \(\widehat{BAM}=\widehat{CDM}\)

mà \(\widehat{CDM}>\widehat{MAC}\)(DA>DC)

nên \(\widehat{BAM}>\widehat{MAC}\)

16 tháng 6 2017

A B C M D H E

a) Xét \(\Delta\)BAM và \(\Delta\)CDM có: 

MB=MC

^AMB=^DMC   => \(\Delta\)BAM=\(\Delta\)CDM (c.g.c)

MA=MD

=> AB=DC (2 cạnh tương ứng). Mà AB<AC =>DC<AC => ^DAC<^ADC (Qhệ góc và cạnh đối diện)

^ADC=^BAM (2 góc tương ứng) => ^BAM>^CAM hay ^MAB>^MAC (đpcm)

b) AH \(⊥\)BC , AC>AB => HC>HB (Qhệ đường xiên hình chiếu)

E nằm giữa A và H => EH\(⊥\)BC, HC>HB => EC>EB.

26 tháng 4 2017

A B C E M

a) Xét hai tam giác vuông ABM và ECM có:

MB = MC (gt)

MA = ME (gt)

Vậy: \(\Delta ABM=\Delta ECM\left(ch-cgv\right)\)

b) Vì \(\Delta ABM=\Delta ECM\left(cmt\right)\)

Suy ra: \(\widehat{ABM=\widehat{BCE}}\) ( hai góc tương ứng)

\(\widehat{ABM=90^o}\)

Nên \(\widehat{BCE=90^o}\) hay EC \(\perp\) AB

c) Vì \(\Delta ABC\) vuông tại B

nên \(\widehat{ABC>\widehat{ACB}}\) (vì \(\widehat{ABC=90^o}\))

\(\Rightarrow\) AC > AB (quan hệ giữa góc và cạnh đối diện trong tam giác)

Mà AB = CE (\(\Delta ABM=\Delta ECM\))

Do đó: AC > CE

d) Ta có: \(\widehat{BAE=\widehat{AEC}}\) (\(\Delta ABM=\Delta ECM\))

Mà hai góc này ở vị trí so le trong

Vậy: BE // AC.