Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý :
Tam giác BMA = tam giác CMD ( c. g. c )
=> AB = CD ; góc BAM = góc MDC
ta có : AB < AC
=> CD < AC
=> góc CAD < góc CDA ( qh ... )
hay góc CAM < góc CDM
mà góc CDM = góc BAM
=> Góc CAM < Góc BAM
a: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: BA//DC
=>\(\widehat{BAM}=\widehat{CDM}\)
b: Ta có: \(\widehat{BAM}=\widehat{CDM}\)
mà \(\widehat{CDM}>\widehat{MAC}\)(DA>DC)
nên \(\widehat{BAM}>\widehat{MAC}\)
a) Xét tam giác AIB và CID ta có
IA=IC(gt)
AIB=DIC(đói đỉnh)
IB=ID
=>tam giác AIB = tam gics CID
b) đề sai nha M là trung điểm của AB mới đúng nha bạn
Xét tam giác AIM và CIN ta có
IA=IC(gt)
MAC=DCA(vì tam giác AIB=CID)
AM=AB chia 2
CN=CDchia 2
AB=CD(vì tg AIB=tg CID)
=>AM=CN
=>tg AIM=TG CIN
=> IM=IN(tương ứng) (1)
=> GÓC AIM = CIN
mà A,I,C thảng hàng
=> M,I,N thẳng hàng (2)
kết hợp (1) và (2) => I là trung điểm của MN
c) trong tam giác ABC có A > 90độ
=> AIB < 90 độ
mà AIB+BIC=180 độ( 2 góc kề bù)
=> BIC > 90 độ
=> AIC<BIC (đpcm)
d)ta có : tam giac AIB = CID
=> ACD=A
AC vuông góc vs CD => ACD = 90 độ
=> A=90độ
=> tam giác ABC là Tam Giác Vuông Tại A
vậy để AC vuông góc vs CD
Thì tam Giác ABC phải vuông tại A
ok nha em
A B C E M
a) Xét hai tam giác vuông ABM và ECM có:
MB = MC (gt)
MA = ME (gt)
Vậy: \(\Delta ABM=\Delta ECM\left(ch-cgv\right)\)
b) Vì \(\Delta ABM=\Delta ECM\left(cmt\right)\)
Suy ra: \(\widehat{ABM=\widehat{BCE}}\) ( hai góc tương ứng)
Mà \(\widehat{ABM=90^o}\)
Nên \(\widehat{BCE=90^o}\) hay EC \(\perp\) AB
c) Vì \(\Delta ABC\) vuông tại B
nên \(\widehat{ABC>\widehat{ACB}}\) (vì \(\widehat{ABC=90^o}\))
\(\Rightarrow\) AC > AB (quan hệ giữa góc và cạnh đối diện trong tam giác)
Mà AB = CE (\(\Delta ABM=\Delta ECM\))
Do đó: AC > CE
d) Ta có: \(\widehat{BAE=\widehat{AEC}}\) (\(\Delta ABM=\Delta ECM\))
Mà hai góc này ở vị trí so le trong
Vậy: BE // AC.
a) Xét tam giác ABM và tam giác ECM có :
AM = ME
\(\widehat{AMB}=\widehat{CME}\left(đđ\right)\)
BM = MC
\(\Rightarrow\) tam giác ABM = tam giác ECM ( c-g-c ) (đpcm)
b) Do tam giác ABM = tam giác ECM
\(\Rightarrow AB=CE\) (1)
Mà tam giác ABC vuông tại B
\(\Rightarrow AC>AB\) ( do cạnh AC là cạnh huyền ) (2)
Từ (1) và (2) \(\Rightarrow AC>CE\left(đpcm\right)\)
c) Xét tam giác ACE có : \(AC>CE\)
\(\Rightarrow\widehat{MAC}< \widehat{CEA}\left(3\right)\)
Mà tam giác ABM = tam giác ECM ( câu a )
\(\Rightarrow\widehat{BAM}=\widehat{CEA}\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\widehat{BAM}>\widehat{MAC}\left(đpcm\right)\)