\(\Delta\)ABC có \(\widehat{B}\)=90o,vẽ trung...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2018

a) Xét tam giác ABM và tam giác ECM có :

AM = ME

\(\widehat{AMB}=\widehat{CME}\left(đđ\right)\)

BM = MC

\(\Rightarrow\) tam giác ABM = tam giác ECM ( c-g-c ) (đpcm)

b) Do tam giác ABM = tam giác ECM

\(\Rightarrow AB=CE\) (1)

Mà tam giác ABC vuông tại B

\(\Rightarrow AC>AB\) ( do cạnh AC là cạnh huyền ) (2)

Từ (1) và (2) \(\Rightarrow AC>CE\left(đpcm\right)\)

c) Xét tam giác ACE có : \(AC>CE\)

\(\Rightarrow\widehat{MAC}< \widehat{CEA}\left(3\right)\)

Mà tam giác ABM = tam giác ECM ( câu a )

\(\Rightarrow\widehat{BAM}=\widehat{CEA}\left(4\right)\)

Từ (3) và (4) \(\Rightarrow\widehat{BAM}>\widehat{MAC}\left(đpcm\right)\)

3 tháng 5 2018

Gợi ý : 

Tam giác BMA = tam giác CMD ( c. g. c ) 

=> AB = CD ; góc BAM = góc MDC 

ta có : AB < AC 

=> CD < AC 

=> góc CAD < góc CDA  ( qh ... ) 

hay góc CAM < góc CDM 

mà góc CDM = góc BAM 

=> Góc CAM < Góc BAM 

a: Xét tứ giác ABDC có

M là trung điểm của AD
M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: BA//DC

=>\(\widehat{BAM}=\widehat{CDM}\)

b: Ta có: \(\widehat{BAM}=\widehat{CDM}\)

mà \(\widehat{CDM}>\widehat{MAC}\)(DA>DC)

nên \(\widehat{BAM}>\widehat{MAC}\)

24 tháng 1 2019

a)          Xét tam giác AIB và CID ta có

          IA=IC(gt)

           AIB=DIC(đói đỉnh)

            IB=ID

                =>tam giác AIB = tam gics CID

b)           đề sai nha M là trung điểm của AB mới đúng nha bạn

Xét tam giác AIM và CIN ta có

IA=IC(gt)

MAC=DCA(vì tam giác AIB=CID)

AM=AB chia 2

CN=CDchia 2

AB=CD(vì tg AIB=tg CID)

=>AM=CN

=>tg AIM=TG CIN

=> IM=IN(tương ứng)         (1)

=> GÓC AIM = CIN 

mà A,I,C thảng hàng 

=> M,I,N thẳng hàng             (2)

kết hợp (1) và (2) => I là trung điểm của MN

c) trong tam giác ABC có A > 90độ 

=> AIB < 90 độ

mà AIB+BIC=180 độ( 2 góc kề bù)

=> BIC > 90 độ

=> AIC<BIC (đpcm)

d)ta có : tam giac AIB = CID 

=> ACD=A

AC vuông góc vs CD => ACD = 90 độ

=> A=90độ 

=> tam giác ABC là Tam Giác Vuông Tại A

vậy để AC vuông góc vs CD 

Thì tam Giác ABC phải vuông tại A

ok nha em

26 tháng 4 2017

A B C E M

a) Xét hai tam giác vuông ABM và ECM có:

MB = MC (gt)

MA = ME (gt)

Vậy: \(\Delta ABM=\Delta ECM\left(ch-cgv\right)\)

b) Vì \(\Delta ABM=\Delta ECM\left(cmt\right)\)

Suy ra: \(\widehat{ABM=\widehat{BCE}}\) ( hai góc tương ứng)

\(\widehat{ABM=90^o}\)

Nên \(\widehat{BCE=90^o}\) hay EC \(\perp\) AB

c) Vì \(\Delta ABC\) vuông tại B

nên \(\widehat{ABC>\widehat{ACB}}\) (vì \(\widehat{ABC=90^o}\))

\(\Rightarrow\) AC > AB (quan hệ giữa góc và cạnh đối diện trong tam giác)

Mà AB = CE (\(\Delta ABM=\Delta ECM\))

Do đó: AC > CE

d) Ta có: \(\widehat{BAE=\widehat{AEC}}\) (\(\Delta ABM=\Delta ECM\))

Mà hai góc này ở vị trí so le trong

Vậy: BE // AC.