\(\frac{1}{2}BC\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tam giác AED và tam giác CEF có:

AE = CE (E là trung điểm của AC)

AED = CEF (2 góc đối đỉnh)

ED = EF (E là trung điểm của DF)

=> Tam giác AED = Tam giác CEF (c.g.c)

=> AD = CF (2 cạnh tương ứng) mà AD = DB (D là trung điểm của AB) => DB = CF

ADE = CFE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AD // CF

Xét tam giác BDC và tam giác FCD có:

BD = FC (chứng minh trên)

BDC = FCD (2 góc so le trong, AD // CF)

CD chung

=> Tam giác BDC = Tam giác FCD (c.g.c)

=> BCD = FDC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => DE // BC

BC = FD (2 cạnh tương ứng) mà DE = 1/2 FD (E là trung điểm của FD) => DE = 1/2 BC

5 tháng 1 2019

Xét tam giác AED và tam giác CEF có:

AE = CE (E là trung điểm của AC)

AED = CEF (2 góc đối đỉnh)

ED = EF (E là trung điểm của DF)

=> Tam giác AED = Tam giác CEF (c.g.c)

=> AD = CF (2 cạnh tương ứng) mà AD = DB (D là trung điểm của AB) => DB = CF

ADE = CFE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AD // CF

Xét tam giác BDC và tam giác FCD có:

BD = FC (chứng minh trên)

BDC = FCD (2 góc so le trong, AD // CF)

CD chung

=> Tam giác BDC = Tam giác FCD (c.g.c)

=> BCD = FDC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => DE // BC

BC = FD (2 cạnh tương ứng) mà DE = 1/2 FD (E là trung điểm của FD) => DE = 1/2 BC

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: a) DC= \(\frac{1}{2}\)AB và DC // ACb) AD=MCc) MN // BC và MN =\(\frac{1}{2}\)BCBài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường...
Đọc tiếp

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: 

a) DC= \(\frac{1}{2}\)AB và DC // AC

b) AD=MC

c) MN // BC và MN =\(\frac{1}{2}\)BC

Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:

a) DE=BC

b) BC\(\perp\)DE tại H

c) AN = AM và AN\(\perp\)AM

Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:

a) BN = CA

b) góc BAC + góc DAE = 180 độ 

c) AM = \(\frac{1}{2}\)DE

Nhớ vẽ hình hộ mik nha :))

 

0
14 tháng 12 2018

Xét tam giác AED và tam giác CEF có:

AE = CE (E là trung điểm của AC)

AED = CEF (2 góc đối đỉnh)

ED = EF (E là trung điểm của DF)

=> Tam giác AED = Tam giác CEF (c.g.c)

=> AD = CF (2 cạnh tương ứng) mà AD = DB (D là trung điểm của AB) => DB = CF

ADE = CFE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AD // CF

Xét tam giác BDC và tam giác FCD có:

BD = FC (chứng minh trên)

BDC = FCD (2 góc so le trong, AD // CF)

CD chung

=> Tam giác BDC = Tam giác FCD 

=> BCD = FDC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => DE // BC

BC = FD (2 cạnh tương ứng) mà DE = 12FD (E là trung điểm của FD) => DE = 1/2BC

14 tháng 12 2018

a/Xét ΔAED va ΔCEF có:

AE=CE(vì E là trung điểm của AC)

∠AED=∠CEF(đối đỉnh)

ED=EF(vì E là trung điểm của DF)

nên: ΔAED=ΔCEF

do đó: AD=CF

mà AD=BD (vì D là trung điểm của AB)

vậy BD=CF

b/Ta có: ∠EAD=∠ECF(vì ΔAED=ΔCEF)

mà hai góc này ở vị trí so le trong

nên AB//CF

Ta có:AB//CF(cmt)

nên ∠BDC=∠FCD (hai góc so le trong)

Xét: ΔBDC và ΔFCD có:

DC là cạnh chung

∠BDC=∠FCD(cmt)\

DB=CF(cmt)

nên ΔBDC=ΔFCD(c-g-)

c/Ta có: ∠BCD=∠FDC(vì ΔBDC=ΔFCD)

mà hai góc này ở vị trí so le trong

nên DE//BC

Ta có: DE=1/2DF=12DF(vì E là trung điểm của DF)

mà DF=CB(vì ΔFCD=ΔBDC)

vậy DE=1/2CB

6 tháng 7 2017

B,D,C là 3 điểm thẳng hàng mà tam giác sao đc đề sai r kìa -.- DE giao BC song song sao đc ?

5 tháng 11 2018

câu c bn tự lm nha

xét tam giác AED và tam giác CEF ta có

AE=CE ( giả thiết)

DE=EF ( gt )

góc AED = góc FEC ( đối đỉnh)

suy ra tam giác AED=tam giác CEF( c-g-c)

=> AD =CF

=> ra BD = CF( cùng bằng AD)

b) ta có tam giác AED = tam giác CEF ( cmt)

=> góc ADE = góc EFC mà hai góc này nằm ở vị trí sole tròn nên AB song song với CF => góc BDC = góc FCD

xét tam giác BDC và tam giác FCD ta có

CD cạnh chung 

DB=CF ( theo câu a)

góc BDC=góc FCD

=>> tam giác BDC = tam giác FCD ( c-g-c)

đúng 99 % đs hình bn tự vẽ nha với câu c mình ko biết lm ahihi

24 tháng 12 2016

a) Xét t/g FEC và t/g DEA có:

FE = DE (gt)

FEC = DEA ( đối đỉnh)

EC = EA (gt)

Do đó, t/g FEC = t/g DEA (c.g.c)

=> FC = DA (2 cạnh tương ứng)

Mà DA = DB (gt) nên FC = DB (đpcm)

b) t/g FEC = t/g DEA (câu a)

=> FCE = DAE (2 góc tương ứng)

Mà FCE và DAE là 2 góc so le trong nên FC // AD hay FC // AB

Xét t/g BDC và t/g FCD có:

BD = FC (câu a)

BDC = FCD (so le trong)

CD là cạnh chung

Do đó, t/g BDC = t/g FCD (c.g.c) (đpcm)

c) t/g BDC = t/g FCD (câu b) => BC = FD (2 cạnh tương ứng)

BCD = FDC (2 góc tương ứng)

Mà DE = 1/2FD (gt)

BCD và FDC là 2 góc so le trong nên DE // BC; DE = 1/2BC (đpcm)

 

4 tháng 3 2018

Cái này là ở bài: Đường trung bình của tam giác, sách lớp 8 tập 1 đó bạn

Bạn kiếm về và xem nha

27 tháng 12 2021

chịu thui, tui ko biết j cả

27 tháng 12 2021

cau a dung chua

24 tháng 7 2017

Giải

a) Xét ∆ADE và ∆CFE, ta có:

AE = CE (gt)

ˆAED = CEF^ (đối đỉnh)

DE = FE(gt)

Suy ra: ∆ADE = ∆CFE (c.g.c)

⇒⇒ AD = CF (hai cạnh tương ứng)

Mà AD = DB (gt)

Vậy: DB = CF

b) Ta có: ∆ADE = ∆CFE (chứng minh trên)

⇒ˆADE = CFE^ (2 góc tương ứng)

⇒⇒ AD // CF (vì có cặp góc so le trong bằng nhau)

Hay AB // CF

Xét ∆DBC = ∆CDF, ta có:

BD = CF (chứng minh trên)

ˆBDC = ˆFCD (hai góc so le trong vì CF // AB)

DC cạnh chung

Suy ra: ∆BDC = ∆FCD(c. g. c)

c) Ta có: ∆BDC = ∆FCD (chứng minh trên)

Suy ra: ˆC1 = ˆD1 (hai góc tương ứng)

Suy ra: DE // BC (vì có hai góc so le trong bằng nhau)

\(\Delta\)BDC = ∆FCD => BC = DF (hai cạnh tương ứng)

DE = 1 : 2 . DF(gt). Vậy DE = 1 : 2 . BC

20 tháng 12 2017

a/Xét ΔAED va ΔCEF có:

AE=CE(vì E là trung điểm của AC)

∠AED=∠CEF(đối đỉnh)

ED=EF(vì E là trung điểm của DF)

nên: ΔAED=ΔCEF(c-g-c)

do đó: AD=CF

mà AD=BD (vì D là trung điểm của AB)

vậy BD=CF

b/Ta có: ∠EAD=∠ECF(vì ΔAED=ΔCEF)

mà hai góc này ở vị trí so le trong

nên AB//CF

Ta có:AB//CF(cmt)

nên ∠BDC=∠FCD (hai góc so le trong)

Xét: ΔBDC và ΔFCD có:

DC là cạnh chung

∠BDC=∠FCD(cmt)\

DB=CF(cmt)

nên ΔBDC=ΔFCD(c-g-)

c/Ta có: ∠BCD=∠FDC(vì ΔBDC=ΔFCD)

mà hai góc này ở vị trí so le trong

nên DE//BC

Ta có: \(DE=\dfrac{1}{2}DF\)(vì E là trung điểm của DF)

mà DF=CB(vì ΔFCD=ΔBDC)

vậy \(DE=\dfrac{1}{2}CB\)

A B C F E D