K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

Giải

a) Xét ∆ADE và ∆CFE, ta có:

AE = CE (gt)

ˆAED = CEF^ (đối đỉnh)

DE = FE(gt)

Suy ra: ∆ADE = ∆CFE (c.g.c)

⇒⇒ AD = CF (hai cạnh tương ứng)

Mà AD = DB (gt)

Vậy: DB = CF

b) Ta có: ∆ADE = ∆CFE (chứng minh trên)

⇒ˆADE = CFE^ (2 góc tương ứng)

⇒⇒ AD // CF (vì có cặp góc so le trong bằng nhau)

Hay AB // CF

Xét ∆DBC = ∆CDF, ta có:

BD = CF (chứng minh trên)

ˆBDC = ˆFCD (hai góc so le trong vì CF // AB)

DC cạnh chung

Suy ra: ∆BDC = ∆FCD(c. g. c)

c) Ta có: ∆BDC = ∆FCD (chứng minh trên)

Suy ra: ˆC1 = ˆD1 (hai góc tương ứng)

Suy ra: DE // BC (vì có hai góc so le trong bằng nhau)

\(\Delta\)BDC = ∆FCD => BC = DF (hai cạnh tương ứng)

DE = 1 : 2 . DF(gt). Vậy DE = 1 : 2 . BC

20 tháng 12 2017

a/Xét ΔAED va ΔCEF có:

AE=CE(vì E là trung điểm của AC)

∠AED=∠CEF(đối đỉnh)

ED=EF(vì E là trung điểm của DF)

nên: ΔAED=ΔCEF(c-g-c)

do đó: AD=CF

mà AD=BD (vì D là trung điểm của AB)

vậy BD=CF

b/Ta có: ∠EAD=∠ECF(vì ΔAED=ΔCEF)

mà hai góc này ở vị trí so le trong

nên AB//CF

Ta có:AB//CF(cmt)

nên ∠BDC=∠FCD (hai góc so le trong)

Xét: ΔBDC và ΔFCD có:

DC là cạnh chung

∠BDC=∠FCD(cmt)\

DB=CF(cmt)

nên ΔBDC=ΔFCD(c-g-)

c/Ta có: ∠BCD=∠FDC(vì ΔBDC=ΔFCD)

mà hai góc này ở vị trí so le trong

nên DE//BC

Ta có: \(DE=\dfrac{1}{2}DF\)(vì E là trung điểm của DF)

mà DF=CB(vì ΔFCD=ΔBDC)

vậy \(DE=\dfrac{1}{2}CB\)

A B C F E D

16 tháng 1 2018

A B C D E F 1 2 a) Xét tam giác EAD và tam giác ECF , có :

EA = EC ( E là trung điểm của AC )

ED = EF ( gt )

góc E1 = góc E2 ( hai góc đối đỉnh )

=> tam giác EAD = tam giác ECF ( c-g-c )

=> DA = FC ( hai cạnh tương ứng ) mà DA = DB ( D là trung điểm của AB ) => DB = CF

Vậy DB = CF

b) Vì góc DAE = góc ECF ( tam giác EAD = tam giác ECF ) mà 2 góc ở vị trí so le trong nên AD // EC mà AD = DB ( gt ) => DB // FC=> góc BDC = góc DCF

Xét tam giác DFC và tam giác CBD , có :

DC : chung

CF = DB ( chứng minh trên )

góc BDC = góc DCF ( chứng minh trên )

=> tam giác DFC và tam giác CBD ( c-g-c )

Vậy tam giác DFC và tam giác CBD ( c-g-c )

c) Vì tam giác DFC và tam giác CBD ( chứng minh trên ) => góc FDC = góc DCB ( hai góc tương ứng ) mà hai góc ở vị trí so le trong nên DE // BC ( dấu hiệu nhận biết hai đường thẳng song song )

Vậy DE // BC

Vì DE + EF = DF ; E là trung điểm của DF mà DF = BC ( tam giác DFC và tam giác CBD ) => DE = \(\dfrac{1}{2}\) DF hay DE = \(\dfrac{1}{2}\) BC

Vậy DE = \(\dfrac{1}{2}\) BC

*** Bn ơi câu c phải là DE = \(\dfrac{1}{2}\) BC và dề bài : Vẽ điểm F sao cho E là trung điểm của DF nha ***

16 tháng 1 2018

câu b) sửa lại là BDC nha :))ngaingung

14 tháng 12 2018

Xét tam giác AED và tam giác CEF có:

AE = CE (E là trung điểm của AC)

AED = CEF (2 góc đối đỉnh)

ED = EF (E là trung điểm của DF)

=> Tam giác AED = Tam giác CEF (c.g.c)

=> AD = CF (2 cạnh tương ứng) mà AD = DB (D là trung điểm của AB) => DB = CF

ADE = CFE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AD // CF

Xét tam giác BDC và tam giác FCD có:

BD = FC (chứng minh trên)

BDC = FCD (2 góc so le trong, AD // CF)

CD chung

=> Tam giác BDC = Tam giác FCD 

=> BCD = FDC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => DE // BC

BC = FD (2 cạnh tương ứng) mà DE = 12FD (E là trung điểm của FD) => DE = 1/2BC

14 tháng 12 2018

a/Xét ΔAED va ΔCEF có:

AE=CE(vì E là trung điểm của AC)

∠AED=∠CEF(đối đỉnh)

ED=EF(vì E là trung điểm của DF)

nên: ΔAED=ΔCEF

do đó: AD=CF

mà AD=BD (vì D là trung điểm của AB)

vậy BD=CF

b/Ta có: ∠EAD=∠ECF(vì ΔAED=ΔCEF)

mà hai góc này ở vị trí so le trong

nên AB//CF

Ta có:AB//CF(cmt)

nên ∠BDC=∠FCD (hai góc so le trong)

Xét: ΔBDC và ΔFCD có:

DC là cạnh chung

∠BDC=∠FCD(cmt)\

DB=CF(cmt)

nên ΔBDC=ΔFCD(c-g-)

c/Ta có: ∠BCD=∠FDC(vì ΔBDC=ΔFCD)

mà hai góc này ở vị trí so le trong

nên DE//BC

Ta có: DE=1/2DF=12DF(vì E là trung điểm của DF)

mà DF=CB(vì ΔFCD=ΔBDC)

vậy DE=1/2CB

24 tháng 12 2016

a) Xét t/g FEC và t/g DEA có:

FE = DE (gt)

FEC = DEA ( đối đỉnh)

EC = EA (gt)

Do đó, t/g FEC = t/g DEA (c.g.c)

=> FC = DA (2 cạnh tương ứng)

Mà DA = DB (gt) nên FC = DB (đpcm)

b) t/g FEC = t/g DEA (câu a)

=> FCE = DAE (2 góc tương ứng)

Mà FCE và DAE là 2 góc so le trong nên FC // AD hay FC // AB

Xét t/g BDC và t/g FCD có:

BD = FC (câu a)

BDC = FCD (so le trong)

CD là cạnh chung

Do đó, t/g BDC = t/g FCD (c.g.c) (đpcm)

c) t/g BDC = t/g FCD (câu b) => BC = FD (2 cạnh tương ứng)

BCD = FDC (2 góc tương ứng)

Mà DE = 1/2FD (gt)

BCD và FDC là 2 góc so le trong nên DE // BC; DE = 1/2BC (đpcm)

 

Xét tam giác AED và tam giác CEF có:

AE = CE (E là trung điểm của AC)

AED = CEF (2 góc đối đỉnh)

ED = EF (E là trung điểm của DF)

=> Tam giác AED = Tam giác CEF (c.g.c)

=> AD = CF (2 cạnh tương ứng) mà AD = DB (D là trung điểm của AB) => DB = CF

ADE = CFE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AD // CF

Xét tam giác BDC và tam giác FCD có:

BD = FC (chứng minh trên)

BDC = FCD (2 góc so le trong, AD // CF)

CD chung

=> Tam giác BDC = Tam giác FCD (c.g.c)

=> BCD = FDC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => DE // BC

BC = FD (2 cạnh tương ứng) mà DE = 1/2 FD (E là trung điểm của FD) => DE = 1/2 BC

5 tháng 1 2019

Xét tam giác AED và tam giác CEF có:

AE = CE (E là trung điểm của AC)

AED = CEF (2 góc đối đỉnh)

ED = EF (E là trung điểm của DF)

=> Tam giác AED = Tam giác CEF (c.g.c)

=> AD = CF (2 cạnh tương ứng) mà AD = DB (D là trung điểm của AB) => DB = CF

ADE = CFE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AD // CF

Xét tam giác BDC và tam giác FCD có:

BD = FC (chứng minh trên)

BDC = FCD (2 góc so le trong, AD // CF)

CD chung

=> Tam giác BDC = Tam giác FCD (c.g.c)

=> BCD = FDC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => DE // BC

BC = FD (2 cạnh tương ứng) mà DE = 1/2 FD (E là trung điểm của FD) => DE = 1/2 BC

6 tháng 7 2017

B,D,C là 3 điểm thẳng hàng mà tam giác sao đc đề sai r kìa -.- DE giao BC song song sao đc ?

5 tháng 11 2018

câu c bn tự lm nha

xét tam giác AED và tam giác CEF ta có

AE=CE ( giả thiết)

DE=EF ( gt )

góc AED = góc FEC ( đối đỉnh)

suy ra tam giác AED=tam giác CEF( c-g-c)

=> AD =CF

=> ra BD = CF( cùng bằng AD)

b) ta có tam giác AED = tam giác CEF ( cmt)

=> góc ADE = góc EFC mà hai góc này nằm ở vị trí sole tròn nên AB song song với CF => góc BDC = góc FCD

xét tam giác BDC và tam giác FCD ta có

CD cạnh chung 

DB=CF ( theo câu a)

góc BDC=góc FCD

=>> tam giác BDC = tam giác FCD ( c-g-c)

đúng 99 % đs hình bn tự vẽ nha với câu c mình ko biết lm ahihi

23 tháng 1 2020

Bạn tự vẽ hình nhé!

a) + b) Xét \(\Delta ADE\)và \(\Delta CFE\)có: 

\(AE=EC\)( E là trung điểm của AC )

\(DE=EF\)( E là trung điểm của DF )

\(\widehat{AED}=\widehat{CEF}\)( 2 góc đối đỉnh )

\(\Rightarrow\Delta ADE=\Delta CFE\left(c.g.c\right)\)

\(\Rightarrow AD=CF\)( 2 cạnh tương ứng )

mà \(AD=DB\)( D là trung điểm của AB )

nên \(DB=CF\)

c) Ta có: \(\widehat{EAD}=\widehat{ECF}\left(\Delta EDA=\Delta EFC\right)\)

mà 2 góc này nằm ở vị trí so le trong

nên \(AD//CF,AB//CF\)

d) Xét \(\Delta BDC\)và \(\Delta FCD\)có: 

\(BD=FC\left(cmt\right)\)

\(\widehat{BDC}=\widehat{FCD}\)( 2 góc so le trong, \(AD//CF\))

CD là cạnh chung

\(\Rightarrow\Delta BDC=\Delta FCD\left(c.g.c\right)\)

\(\Rightarrow\widehat{BCD}=\widehat{FDC}\)( 2 góc tương ứng )

mà 2 góc này ở vị trí so le trong

\(\Rightarrow DE//BC\)

Chúc bạn học tốt !!!

23 tháng 1 2020

A B C D E F 1 2 1 1

a, Xét \(\Delta ADE\) và \(\Delta CDE\) có:

\(AE=CE\left(E-là-tr.điểm-của-AC\right)\)

\(\widehat{A1}=\widehat{A2}\left(đ.đỉnh\right)\)

\(DE=FE\left(gt\right)\)

\(\Rightarrow\Delta ADE=\Delta CFE\left(c-g-c\right)\left(1\right)\)

b, Từ \(\left(1\right)\Rightarrow AD=CF\left(2c.t.ứ\right)\left(2\right)\)

Mà: \(AD=BD\left(D-là-tr.điểm-của-AB\right)\left(3\right)\)

Từ \(\left(2\right)\left(3\right)\Rightarrow DB=CF\)

c, Từ \(\left(1\right)\Rightarrow\widehat{A1}=\widehat{C1}\)

Mà 2 góc đang ở vị trí so le trong nên:

\(\Rightarrow AB//CF\)

d, Xét \(\Delta ABC\) có:

\(D\) là trung điểm của \(AB\)

\(E\) là trung điểm của \(AC\)

\(\Rightarrow DE//BC\)