Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
a) Xét ∆ADE và ∆CFE, ta có:
AE = CE (gt)
ˆAED = CEF^ (đối đỉnh)
DE = FE(gt)
Suy ra: ∆ADE = ∆CFE (c.g.c)
⇒⇒ AD = CF (hai cạnh tương ứng)
Mà AD = DB (gt)
Vậy: DB = CF
b) Ta có: ∆ADE = ∆CFE (chứng minh trên)
⇒ˆADE = CFE^ (2 góc tương ứng)
⇒⇒ AD // CF (vì có cặp góc so le trong bằng nhau)
Hay AB // CF
Xét ∆DBC = ∆CDF, ta có:
BD = CF (chứng minh trên)
ˆBDC = ˆFCD (hai góc so le trong vì CF // AB)
DC cạnh chung
Suy ra: ∆BDC = ∆FCD(c. g. c)
c) Ta có: ∆BDC = ∆FCD (chứng minh trên)
Suy ra: ˆC1 = ˆD1 (hai góc tương ứng)
Suy ra: DE // BC (vì có hai góc so le trong bằng nhau)
\(\Delta\)BDC = ∆FCD => BC = DF (hai cạnh tương ứng)
Mà DE = 1 : 2 . DF(gt). Vậy DE = 1 : 2 . BC
a/Xét ΔAED va ΔCEF có:
AE=CE(vì E là trung điểm của AC)
∠AED=∠CEF(đối đỉnh)
ED=EF(vì E là trung điểm của DF)
nên: ΔAED=ΔCEF(c-g-c)
do đó: AD=CF
mà AD=BD (vì D là trung điểm của AB)
vậy BD=CF
b/Ta có: ∠EAD=∠ECF(vì ΔAED=ΔCEF)
mà hai góc này ở vị trí so le trong
nên AB//CF
Ta có:AB//CF(cmt)
nên ∠BDC=∠FCD (hai góc so le trong)
Xét: ΔBDC và ΔFCD có:
DC là cạnh chung
∠BDC=∠FCD(cmt)\
DB=CF(cmt)
nên ΔBDC=ΔFCD(c-g-)
c/Ta có: ∠BCD=∠FDC(vì ΔBDC=ΔFCD)
mà hai góc này ở vị trí so le trong
nên DE//BC
Ta có: \(DE=\dfrac{1}{2}DF\)(vì E là trung điểm của DF)
mà DF=CB(vì ΔFCD=ΔBDC)
vậy \(DE=\dfrac{1}{2}CB\)
A B C F E D
A B C D E F 1 2 a) Xét tam giác EAD và tam giác ECF , có :
EA = EC ( E là trung điểm của AC )
ED = EF ( gt )
góc E1 = góc E2 ( hai góc đối đỉnh )
=> tam giác EAD = tam giác ECF ( c-g-c )
=> DA = FC ( hai cạnh tương ứng ) mà DA = DB ( D là trung điểm của AB ) => DB = CF
Vậy DB = CF
b) Vì góc DAE = góc ECF ( tam giác EAD = tam giác ECF ) mà 2 góc ở vị trí so le trong nên AD // EC mà AD = DB ( gt ) => DB // FC=> góc BDC = góc DCF
Xét tam giác DFC và tam giác CBD , có :
DC : chung
CF = DB ( chứng minh trên )
góc BDC = góc DCF ( chứng minh trên )
=> tam giác DFC và tam giác CBD ( c-g-c )
Vậy tam giác DFC và tam giác CBD ( c-g-c )
c) Vì tam giác DFC và tam giác CBD ( chứng minh trên ) => góc FDC = góc DCB ( hai góc tương ứng ) mà hai góc ở vị trí so le trong nên DE // BC ( dấu hiệu nhận biết hai đường thẳng song song )
Vậy DE // BC
Vì DE + EF = DF ; E là trung điểm của DF mà DF = BC ( tam giác DFC và tam giác CBD ) => DE = \(\dfrac{1}{2}\) DF hay DE = \(\dfrac{1}{2}\) BC
Vậy DE = \(\dfrac{1}{2}\) BC
*** Bn ơi câu c phải là DE = \(\dfrac{1}{2}\) BC và dề bài : Vẽ điểm F sao cho E là trung điểm của DF nha ***
Xét tam giác AED và tam giác CEF có:
AE = CE (E là trung điểm của AC)
AED = CEF (2 góc đối đỉnh)
ED = EF (E là trung điểm của DF)
=> Tam giác AED = Tam giác CEF (c.g.c)
=> AD = CF (2 cạnh tương ứng) mà AD = DB (D là trung điểm của AB) => DB = CF
ADE = CFE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AD // CF
Xét tam giác BDC và tam giác FCD có:
BD = FC (chứng minh trên)
BDC = FCD (2 góc so le trong, AD // CF)
CD chung
=> Tam giác BDC = Tam giác FCD
=> BCD = FDC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => DE // BC
BC = FD (2 cạnh tương ứng) mà DE = 12FD (E là trung điểm của FD) => DE = 1/2BC
a/Xét ΔAED va ΔCEF có:
AE=CE(vì E là trung điểm của AC)
∠AED=∠CEF(đối đỉnh)
ED=EF(vì E là trung điểm của DF)
nên: ΔAED=ΔCEF
do đó: AD=CF
mà AD=BD (vì D là trung điểm của AB)
vậy BD=CF
b/Ta có: ∠EAD=∠ECF(vì ΔAED=ΔCEF)
mà hai góc này ở vị trí so le trong
nên AB//CF
Ta có:AB//CF(cmt)
nên ∠BDC=∠FCD (hai góc so le trong)
Xét: ΔBDC và ΔFCD có:
DC là cạnh chung
∠BDC=∠FCD(cmt)\
DB=CF(cmt)
nên ΔBDC=ΔFCD(c-g-)
c/Ta có: ∠BCD=∠FDC(vì ΔBDC=ΔFCD)
mà hai góc này ở vị trí so le trong
nên DE//BC
Ta có: DE=1/2DF=12DF(vì E là trung điểm của DF)
mà DF=CB(vì ΔFCD=ΔBDC)
vậy DE=1/2CB
a) Xét tam giác AEDvà tam giác CÈ có :
AE=EC(vì E là trung điểm của AC )
góc DAE=góc FCE(so le trong)
DE=EF( vì E là trung điểm của F )
=> 2 tam giác bằng nhau theo trường hợp cgc(dpcm)
b)xét tam giác AED và tam giác CEF (cmt)
=> góc ADE=góc F
=> AB song song CF( có 2 góc bằng nhau ở vị trí so le trong )
c) xét tam giác BDC và tam giác FCD là
DB=CF (cmt )
góc BDC= góc F (cmt)
DC chung
=> 2 tam giác bằng nhau theo trương hợp cgc
d)tam giác BDC =tam giác FCD (cmt)
=> góc c = góc d
=> DE song song BC ( có 2 góc = nhau ở vị trí so le trong )
tam giác BDC = bằng tam giác FCD
=> BC=DF
=> DE = 1/2 DF
mà DE==BC
=> DE = 1/2 Bc (dpcm)
Dúng đó nha tich đúng cho mình nha ! thanks bạn nha nha !
A B C D E F
a) Xét ΔAED và ΔCEF có:
AE = CE (suy từ gt)
\(\widehat{AED}\) = \(\widehat{CEF}\) (đối đỉnh)
ED = EF (gt)
=> ΔAED = ΔCEF (c.g.c).
b) Vì ΔAED = ΔCEF nên \(\widehat{DAE}\) = \(\widehat{ECF}\) (2 góc t ư )
mà 2 góc này ở vị trí so le trong nên AB // CF.
c) Vì ΔAED = ΔCEF nên AD = FC (2 cạnh t ư)
mà AD = DB (suy từ gt) => DB = FC
Do AB // CF hay DB // CF nên \(\widehat{BDC}\) = \(\widehat{DCF}\) (so le trong)
Xét ΔBDC và ΔFCD có:
BD = FC ( cm trên)
\(\widehat{BDC}\) = \(\widehat{DCF}\) (cm trên)
CD chung
=> ΔBDC = ΔFCD (c.g.c)
d) Lại do ΔBDC = ΔFCD nên \(\widehat{BCD}\) = \(\widehat{FDC}\) (2 góc t ư); DF = BC ( 2 cạnh t ư)
mà 2 góc này ở vị trí so le trong nên DE // BC
mà DE = \(\frac{1}{2}\)EF => DE = \(\frac{1}{2}\)BC.
A B C D E F
Mình vẽ hình không được đẹp lắm , bạn thông cảm
a) Xét tam giac ADE và tam giác FEC ta có:
AE=EC ( E là trung điểm AC )
DE= EF ( E la trung điểm DF)
AED= CEF ( đđ )
=> tam giác ADE = tam giác FEC ( c.g.c)
=> AD = CF ( 2 cạnh tương ứng )
mà AD=DB ( D là trung điểm AB)
=> DB=CF
b)Vì tam giác ADE = tam giác FEC(cmt)=> goc EAD = goc ECF ( 2 góc tương ứng )
mÀ góc EAD và góc ECF ở vị trí SLT
nên AD// CF hay AB// CF
Xét tam giác BDC và tam giác DCF ta co:
BD= CF ( cmt)
DC là cạnh chung
goc BDC= goc FCD (cmr)
=> tam giác BDC= tam giác DCF ( c.g.c)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
A B C D E F
Bài làm
Xét tam giác AED và tam giác CEF
Ta có: AE = EC ( E là trung điểm của AC )
\(\widehat{AED}=\widehat{FEC}\)( hai góc đối đỉnh )
ED = EF ( giả thiết )
=> Tam giác AED = tam giác CEF ( c.g.c )
b) Vì tam giác AED = tam giác CEF ( theo câu a )
=> FC = AD ( hai cạnh tương ứng )
Mà AD = BD ( giả thiết )
=> FC = BD
A B C E D
a) Xét \(\Delta ABE\) và \(\Delta DCE\) có :
BE = EC (E là trung điểm của BC -gt)
\(\widehat{AEB}=\widehat{DEC}\) (đối đỉnh)
AE = ED (gt)
=> \(\Delta ABE\) = \(\Delta DCE\) (c.g.c)
b) Ta có : \(\widehat{CDE}=\widehat{BAE}\) (2 góc tương ứng - \(\Delta ABE\) = \(\Delta DCE\) )
Mà 2 góc này ở vị trí so le trong
=> AB //DC (đpcm)
c) Theo giả thuyết thì ta có :
Trong tam giác ABC có : \(AB=AC\)
=> \(\Delta ABC\) cân tại A
Mà AE là đường trung tuyến trong tam giác
=> AE đồng thời là đường trung trưc trong tam giác
=> \(AE\perp BC\) (đpcm)
d) Để \(\widehat{ADC}=45^o\)
<=> \(\Delta ABC\) vuông cân tại A