Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy các phân số đã cho có dạng :
\(\frac{5}{5}+(n+3);\frac{6}{6}(n+3);...;\frac{17}{17}(n+3)\)
Tức là có dạng \(\frac{a}{a}+(n+3)\)
Để các phân số đã cho tối giản thì a và n + 3 phải nguyên tố cùng nhau
n + 3 phải nhỏ nhất và nguyên tố cùng nhau với các số 5;6;7;...;17
n + 3 phải là số nguyên tố nhỏ nhất lớn hơn 17
n + 3 = 19
=> n = 16
Vậy n = 16
17/5×1/2×10/17×-1/8
17/10×-10/136
-170/1360
-1/8
5/54+10/63+5/63+15/63
5/54+15/63+15/63
5/54+30/63
315/3402+1620/3402
1935/3402
1.
a) Để M là một số nguyên
⇔ 6n-1⋮3n-2 (1)
Vì 3n-2⋮3n-2
⇒ 2(3n-2)⋮3n-2
⇒ 6n-4⋮3n-2 (2)
Từ (1) và (2) ⇒ 6n-1-6n+4⋮3n-2
⇒ 3⋮3n-2
⇒ 3n-2 ∈ Ư(5)={1;-1;3;-3}
⇒ 3n ∈ {3;1;5;-1}
⇒ n ∈ {1}
Vậy n=1 thì M là một số nguyên
b) Ta có: M=\(\frac{6n-1}{3n-2}=\frac{6n-6+3}{3n-2}=\frac{6n-4}{3n-2}+\frac{3}{3n-2}=2+\frac{3}{3n-2}\)
Để M có giá trị nhỏ nhất
⇔ \(2+\frac{3}{3n-2}\) có giá trị nhỏ nhất
⇔ \(\frac{3}{3n-2}\) có giá trị nhỏ nhất
⇔ 3n-2 đạt giá trị nguyên dương nhỏ nhất mà chúng đạt được
⇔ 3n-2=1
⇒ 3n=3 ⇒ n=1
⇒ M=\(\frac{6n-1}{3n-2}=\frac{6.1-1}{3.1-2}=\frac{5}{1}=5\)
Vậy n=1 thì M đạt giá trị nhỏ nhất là 5
\(\frac{3}{5}< \frac{7}{10}< \frac{7}{9}< \frac{8}{9}< \frac{16}{17}< 1< \frac{18}{17}\)