K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìmgiá trị lớn nhất đó.Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn...
Đọc tiếp

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.

Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìm

giá trị lớn nhất đó.
Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.
Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn nhất.
Bài tập 7. Tìm giá trị nhỏ nhất của của biểu thức sau: A= \(\frac{6\cdot n-1}{3\cdot n-2}\) (với n là số nguyên )

Bài tập 8: cho phân số A= \(\frac{n+1}{n-3}\) . Tìm n để có giá trị lớn nhất.
Bài tập 9: ho phân số: p= \(\frac{6\cdot n+5}{3\cdot n+2}\) (n \(\in\)  N Với giá trị nào của n thì phân số p
có giá trị lớn nhất? tìm giá trị lớn nhất đó.

0
16 tháng 7 2018

Ta thấy các phân số đã cho có dạng :

    \(\frac{5}{5}+(n+3);\frac{6}{6}(n+3);...;\frac{17}{17}(n+3)\)

Tức là có dạng \(\frac{a}{a}+(n+3)\)

Để các phân số đã cho tối giản  thì a và n + 3 phải nguyên tố cùng nhau

n + 3 phải nhỏ nhất và nguyên tố cùng nhau với các số 5;6;7;...;17

n + 3 phải là số nguyên tố nhỏ nhất lớn hơn 17

n + 3 = 19

=> n = 16

Vậy n = 16

17/5×1/2×10/17×-1/8

17/10×-10/136

-170/1360

-1/8

5/54+10/63+5/63+15/63

5/54+15/63+15/63

5/54+30/63

315/3402+1620/3402

1935/3402

21 tháng 4 2019

1.

a) Để M là một số nguyên

⇔ 6n-1⋮3n-2 (1)

Vì 3n-2⋮3n-2

⇒ 2(3n-2)⋮3n-2

⇒ 6n-4⋮3n-2 (2)

Từ (1) và (2) ⇒ 6n-1-6n+4⋮3n-2

⇒ 3⋮3n-2

⇒ 3n-2 ∈ Ư(5)={1;-1;3;-3}

⇒ 3n ∈ {3;1;5;-1}

⇒ n ∈ {1}

Vậy n=1 thì M là một số nguyên

b) Ta có: M=\(\frac{6n-1}{3n-2}=\frac{6n-6+3}{3n-2}=\frac{6n-4}{3n-2}+\frac{3}{3n-2}=2+\frac{3}{3n-2}\)

Để M có giá trị nhỏ nhất

\(2+\frac{3}{3n-2}\) có giá trị nhỏ nhất

\(\frac{3}{3n-2}\) có giá trị nhỏ nhất

⇔ 3n-2 đạt giá trị nguyên dương nhỏ nhất mà chúng đạt được

⇔ 3n-2=1

⇒ 3n=3 ⇒ n=1

⇒ M=\(\frac{6n-1}{3n-2}=\frac{6.1-1}{3.1-2}=\frac{5}{1}=5\)

Vậy n=1 thì M đạt giá trị nhỏ nhất là 5

NV
21 tháng 4 2019

\(M_{min}=\frac{1}{2}\) khi \(n=0\)