\(\dfrac{BC}{2}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi M là trung điểm của AD

Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểmcủa BC

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nen ABDC là hình chữ nhật

Suy ra: AD=BC

hay AM=BC/2

b: XétΔABC vuông tại A có \(\cos B=\dfrac{AB}{BC}\)

nên AB/BC=1/2

=>AB=1/2BC

11 tháng 1 2017

a) Có M là trung điểm BC (đề bài)

=> AM là đường trung tuyến

mà AM = BC/2 (trong tam giác VUÔNG đường trung tuyến ứng với cạnh huyền = 1/2 cạnh huyền)

=> Tam giác ABC vuông tại A
=> Góc A = 90 độ

Câu b,c đang nghĩ nhé

Bài 1:

Xét ΔBAC vuông tại A có \(\cos B=\dfrac{AB}{BC}\)

=>AB/BC=1/2

hay AB=1/2BC

Câu 4: 

Ta có: AM=1/2BC

nên AM=BM=CM

Xét ΔMAB có MA=MB

nên ΔMAB cân tại M

=>\(\widehat{MAB}=\widehat{B}\)

Xét ΔMAC có MA=MC

nên ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{C}\)

Xét ΔABC có \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^0\)

=>\(2\cdot\left(\widehat{BAM}+\widehat{CAM}\right)=180^0\)

=>\(\widehat{BAC}=90^0\)

 

 

5 tháng 11 2017

Vẽ đường trung trực AM trên BC

Ta có MC+MB = BC

\(\Rightarrow\) AM+MC=BC và AM+MB+BC

\(\Rightarrow\) AM=1/2BC

5 tháng 11 2017

Ta có ABC là tam giác vuông cân \(\Rightarrow\) AB=BC=\(\sqrt{32}cm\)

\(\Rightarrow AB=\sqrt{32}\)

2 tháng 7 2018

a) Xét tứ giác AIHK có \(\widehat{AIH}+\widehat{IAK}+\widehat{AKH}=270^o\Rightarrow\widehat{IHK}=90^o\)

Vậy nên \(HI\perp HK\)

b) Do IA và HK cùng vuông góc với AC nên IA // HK

Vậy thì \(\widehat{IAH}=\widehat{KHA}\)   (So le trong)

Xét tam giác IAH và tam giác KHA có:

\(\widehat{AIH}=\widehat{HKA}=90^o\)

Cạnh AH chung

\(\widehat{IAH}=\widehat{KHA}\)   

\(\Rightarrow\Delta AIH=\Delta HKA\)     (Cạnh huyền - góc nhọn)

\(\Rightarrow IA=HK.\)

c)  Xét tam giác IAH và tam giác HKI có:

\(\widehat{AIH}=\widehat{KHI}=90^o\)

Cạnh IH chung

\(IA=HK\)   

\(\Rightarrow\Delta AIH=\Delta KHI\)     (Hai cạnh góc vuông)

\(\Rightarrow AH=IK.\)

d) Ta thấy ngay các cặp góc so le trong bằng nhau nên \(\Delta IOA=\Delta KOH\left(g-c-g\right)\Rightarrow OI=OK,OA=OH\)

Xét tam giác vuông IAH có IO là trung tuyến ứng với cạnh huyền nên OH = OA = OI.

Vậy nên OA = OI = OH = OK.

e) 

1. Nếu tam giác ABC cân thì AH là đường cao đồng thời trung tuyến. Vậy thì AH = BH = CH.

Xét tam giác cân BHA có HI là đường cao nên đồng thời là đường trung tuyến. Vậy nên I là trung điểm AB.

Hoàn toàn tương tự ta có K là trung điểm AC.

2.  Tam giác ABC vuông cân tại A nên \(\widehat{ACB}=45^o\)

IA = AB/2; AK = AC/2 mà AB = AC nên AI = AK.

Vậy thì tam giác IAK cũng vuông cân tại A.

Vậy nên \(\widehat{AKI}=45^o\) 

Từ đó ta có \(\widehat{AKI}=\widehat{ACB}=45^o\)

Chúng lại ở vị trí đồng vị nên suy ra IK // BC.

f) Ta có AM = MC nên \(\widehat{MAC}=\widehat{MCA}\)

Lại có \(\widehat{MCA}=\widehat{AHK}\)   (Cùng phụ với góc \(\widehat{KHC}\)  )

Suy ra \(\widehat{MAC}=\widehat{AHK}\)

Lại có \(\widehat{OKA}=\widehat{OHA}\)

Vậy nên \(\widehat{MAK}+\widehat{OKA}=\widehat{AHK}+\widehat{IHA}=90^o\)

Gọi J là giao điểm của AM và IK thì \(\widehat{AJK}=90^o\)  hay \(KI\perp AM\)

24 tháng 5 2016
khó nhỉ
17 tháng 1 2017

Mấy bạn ko ai biết trả lời hết à