K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

Cậu tự vẽ hình nha ! 

Ta có :

\(\widehat{EBA}=90^0+\widehat{CBA}=\widehat{DBC}\)

Xét tam giác ABE và tam giác DBC có :

BD = BA

BE = BC                        => tam giác ABE = tam giác DBC 

\(\widehat{EBA}=\widehat{DBC}\)

Từ đây , ta suy ra 

\(\widehat{BDC}=\widehat{BAE}\)

Gọi giao điểm của BA và CD là X

      giao điểm của AE và CD là Y

Áp dụng tổng 3 góc trong một tam giác , ta có :

\(\widehat{DXB}+\widehat{BDX}+\widehat{XBD}=180^0\)(tam giác BDX)

\(\widehat{XAY}+\widehat{YXA}+\widehat{AYX}=180^0\)   (tam giác YXA)

Mặt khác , góc DXB = góc YXA

                góc BDX = góc YAX 

=> DBX = YXA = 900

=> DC vuông góc với AE

14 tháng 6 2017

Còn chứng minh \(AE=DC\)thì sao bạn?

18 tháng 6 2017

Gọi giao điểm của AB và DC là I, giao điểm của AE và DC là K.

Ta có: ^ABC+^ABD=^ABC+900=^CBD

          ^ABC+^CBE=^ABC+900=^EBA

=> ^CBD=^EBA => \(\Delta\)ABE=\(\Delta\)DBC (c.g.c)

=> ^BAE=^BDC (2 góc tương ứng) hay ^IAK=^BDI

Xét \(\Delta\)BDI và \(\Delta\)IAK: ^BDI=^IAK; ^BID=^KIA (Đối đỉnh) => ^DBI=^IKA

Mà ^DBI=900 => ^IKA=900 => \(AE⊥DC\)(đpcm)

14 tháng 4 2021

undefined

16 tháng 4 2021

cảm ơn bạn nhiều >w<

a: Xét ΔABE có

AD vừa là đường cao, vừa là trung tuyến

=>ΔABE cân tại A

b: Gọi M là giao của AD và FE

Xét ΔAME có

ED,AF là đường cao

ED cắt AF tại C

=>C là trực tâm

=>M,C,K thẳng hàng

=>ĐPCM

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

9 tháng 9 2023

a) Do tam giác AEB vuông cân tại A nên \(\left\{{}\begin{matrix}\widehat{EAB}=90^o\\AE=AB\end{matrix}\right.\)

Ta thấy \(\widehat{MEA}=\widehat{BAH}\) vì chúng cùng phụ với \(\widehat{EAM}\)

Xét 2 tam giác HAB vuông tại H và MEA vuông tại M, ta có:

\(AE=AB\left(cmt\right),\widehat{MEA}=\widehat{BAH}\left(cmt\right)\)

\(\Rightarrow\Delta HAB=\Delta MEA\left(ch-gn\right)\) \(\Rightarrow AH=ME\)     (1)

Tương tự, ta cũng có \(\Delta HAC=\Delta NFA\Rightarrow HC=AN\)     (2)

Từ (1) và (2) suy ra \(EM+HC=AH+AN\) hay \(EM+HC=HN\) (đpcm)

b) Từ \(\Delta HAC=\Delta NFA\Rightarrow AH=NF\)

Từ đó suy ra \(ME=NF\left(=AH\right)\)

Xét tam giác MNE và NMF, ta có:

\(ME=NF\left(cmt\right),\widehat{EMN}=\widehat{FNM}\left(=90^o\right)\), MN là cạnh chung.

\(\Rightarrow\Delta MNE=\Delta NMF\left(c.g.c\right)\)

\(\Rightarrow\widehat{ENM}=\widehat{FMN}\) \(\Rightarrow\) EN//FM (2 góc so le trong bằng nhau)

Ta có đpcm.

28 tháng 2 2020

a, góc BAD = góc CAE = 90

góc DAB + góc BAC = góc DAC 

góc CAE + góc BAC = góc BAE

=> góc DAC = góc BAE 

xét tam giác DAC và tam giác BAE có : AD = AB (gt)

AE = AC (gt)

=> tam giác DAC = tam giác BAE (c-g-c)

=> DC = BE (đn)

b, xét tam giác DNA và tam giác ENM có : NM = NA (gt)

DN = NE do N là trđ của DE (gt)

góc DNA = góc ENM (đối đỉnh)

=> tam giác DNA = tam giác ENM (c-g-c)

=> ME = DA (đn)

AD = AB (Gt)

=> AB = ME 

15 tháng 1 2018

a) Ta có: góc DAC= góc DAB + góc BAC
góc BAE= góc EAC+ góc CAB
Mà góc DAB= góc EAC=90 độ
=> góc DAC= góc BAE
Xét tam giác DAC và tam giác BAE có:
AD=AB
góc DAC= góc BAE
AC=AE
=> tam giác DAC= tam giác BAE ( c.g.c)
=> DC=BE
Gọi I và H lần lượt là giao điểm của DC với AB và BE
Ta có: góc D+ góc DAH+ góc DHA= góc B+ góc BHI+ góc BIH= 180 độ
Mà góc D= góc B ( tam giác DAC= tam giác BAE) va góc DHA = góc BHI ( hai góc đôi đỉnh)
=> góc DAH= góc BIH
Mà góc DAH=90 độ=> góc BIH=90 độ=> DC vuông góc vs BE