\(\Delta\)ABC đều. Ở miền ngoài của tam giác dựng \(\Delta\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2018

MAX khó quá!!!!!!!!!!!!!!!!

câu này nâng cao

14 tháng 6 2017

Cậu tự vẽ hình nha ! 

Ta có :

\(\widehat{EBA}=90^0+\widehat{CBA}=\widehat{DBC}\)

Xét tam giác ABE và tam giác DBC có :

BD = BA

BE = BC                        => tam giác ABE = tam giác DBC 

\(\widehat{EBA}=\widehat{DBC}\)

Từ đây , ta suy ra 

\(\widehat{BDC}=\widehat{BAE}\)

Gọi giao điểm của BA và CD là X

      giao điểm của AE và CD là Y

Áp dụng tổng 3 góc trong một tam giác , ta có :

\(\widehat{DXB}+\widehat{BDX}+\widehat{XBD}=180^0\)(tam giác BDX)

\(\widehat{XAY}+\widehat{YXA}+\widehat{AYX}=180^0\)   (tam giác YXA)

Mặt khác , góc DXB = góc YXA

                góc BDX = góc YAX 

=> DBX = YXA = 900

=> DC vuông góc với AE

14 tháng 6 2017

Còn chứng minh \(AE=DC\)thì sao bạn?

21 tháng 3 2017

a) 

Xét tam giác DAC và tam giác EAB 

có : AB = AD (GT) 

     AE =AC (GT)

    góc DAC =góc EAB (vì DAC = góc A+90 độ ;EAb = góc A +90 độ )

\(\Rightarrow\)tam giác DAC = tam giác BAE ( c.g.c)

\(\Rightarrow DC=CE\)

gọi giao điểm của DC và BE là I 

Xét tam giác DIB 

có : góc IDB + gócDBI =góc IDB + góc ABE 

mà góc ABE = góc ADC (GT) 

\(\Rightarrow\)góc IDB+góc ABE =90 độ (do tam giác DAB cân)

\(\Rightarrow\)góc DIB vuông  

mà hai đường thẳng DC và BE cắt nhau tại I \(\Rightarrow\)DC vuông góc với BE

b) 

xét tam giác BIC (góc BIC =1v) 

\(\Rightarrow\)\(BI^2+CI^2=BC^2\)(1) 

xét tam giác DIE (góc DIE=1v)

\(\Rightarrow DI^2+EI^2=DE^2\)(2) 

xét tam giác DIB (góc DIB = 1v) 

\(\Rightarrow DI^2+BI^2=DB^2\)(3) 

xét tam giác EIC ( góc EIC=1v)

\(\Rightarrow EI^2+CI^2=EC^2\)(4) 

từ (1) , (2) , (3) , (4) \(\Rightarrow BD^2+CE^2=BC^2+DE^2\)

21 tháng 3 2017

Giả sử K là trung điểm của BC mà theo ý c ta lại có đường thẳng qua A vuông góc với DE cắt BC tại K nên ta có GT : 

nếu : đường thẳng qua A mà vuông góc với DE thì ta có BK=CK và ngược lại 

Nên ở đây ta dùng chứng minh ngược tức là nếu BK=CK thì đường thẳng qua A sẽ vuông góc với DE 

Giải : 

Gọi giao điểm của DE và đường thẳng qua nó là X,trên tia đối của tia IK lấy điển Y sao cho HI=HY

 xét tam giác BKY và tam giác AKC 

có : góc BKY = góc AKC (đối đỉnh) 

       BK=KC (GT) 

       AK=KY (GT)

\(\Rightarrow\)tam giác BKY=tam giác AKC ( c.g.c)

\(\Rightarrow\)BY=AC\(\Leftrightarrow\)BY=AE

xét tam giác BYA và tam giác PAE

có PA=BA(GT)

    BY=AE(CMT)

    mà góc DAE+góc BAC=360-90-90=180 độ 

   mặt khác ta lại có : tam giác BKY bằng tam giác AKC 

\(\Rightarrow\)góc BYK = góc CAK 

mà 2 góc này có vị trí so le 

\(\Rightarrow\)BY song song với AC

\(\Rightarrow\)góc ABY + góc BAC =180 độ ( hai góc so le trong )

\(\Rightarrow\)góc ABY = góc DAE (cùng kề với BAC ) 

\(\Rightarrow\)tam giác BYA = tam giác PAE (c.g.c)

\(\Rightarrow\)góc BAY = góc EDA (hai góc tương ứng )

\(\Rightarrow\)góc YAD + góc YDA=góc YAD + góc BAY

\(\Leftrightarrow\)góc YAD + góc BAY + 90 độ = 180 độ

\(\Rightarrow\)góc YAD + góc BAY = 90 độ

\(\Rightarrow\)YK sẽ vuông góc với DE

Vậy từ chứng minh trên ta thấy khi K là trung điểm của BC thi đường thẳng đi qua điểm K và A thì sẽ vuông góc với DE và ngược lại

18 tháng 6 2017

Gọi giao điểm của AB và DC là I, giao điểm của AE và DC là K.

Ta có: ^ABC+^ABD=^ABC+900=^CBD

          ^ABC+^CBE=^ABC+900=^EBA

=> ^CBD=^EBA => \(\Delta\)ABE=\(\Delta\)DBC (c.g.c)

=> ^BAE=^BDC (2 góc tương ứng) hay ^IAK=^BDI

Xét \(\Delta\)BDI và \(\Delta\)IAK: ^BDI=^IAK; ^BID=^KIA (Đối đỉnh) => ^DBI=^IKA

Mà ^DBI=900 => ^IKA=900 => \(AE⊥DC\)(đpcm)

10 tháng 6 2017

C ghi toàn bộ đề giùm e đi đề thiếu sao làm đuợc ?

10 tháng 6 2017

K thiếu đâu cưng ^^