Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy H là trực tâm tam giác ABC nên CH vuông góc AB. Suy ra DB song song CH.
Tương tự BH song song DC (Cùng vuông góc AC)
Vậy nên tứ giác BHCD là hình bình hành.
Do BHCD là hình bình hành nên \(\Delta BHC=\Delta CDB\left(c-g-c\right)\)
Lại có H' đối xứng với H qua BC nên \(\Delta BHC=\Delta BH'C\left(c-c-c\right)\)
Vậy thì \(\Delta CDB=\Delta BH'C\)
Gọi J là giao điểm của HH' và BC. Kẻ DK vuông góc BC tại K.
Khi đó ta có ngay H'J = KD. Vậy nên JKDH' là hình bình hành hay JK//H'D
Suy ra tứ giác BCDH' là hình thang.
Lại có : H'C = BD (Cùng bằng HC) nên BCDH' là hình thang cân.
b) Do BHCD là hình bình hành nên giao điểm của HD và BC là trung điểm mỗi đường. Ta gọi điểm đó là M.
Xét tam giác AHD có AM là trung tuyến, \(AG=\frac{2}{3}AM\) nên G là trọng tâm tam giác.
Vậy thì HG đi qua trung điểm AD, hay H, G, I thẳng hàng.
d) Để hình bình hành BHCD là hình thoi thì BH = HC. Vậy thì AH là đường cao đồng thời trung trực nên tam giác ABC là tam giác cân tại A.
Để hình bình hành BHCD là hình chữ nhật thì HC vuông góc BH. Lại có HC//BD nên BD//BH. Vậy thì BH trùng AB. Tương tự CH trùng AC.
Suy ra để BHCD là hình chữ nhật thì tam giác ABC vuông tại A.
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, Tiếng Việt và Ngữ Văn hoặc Tiếng Anh, và KHÔNG ĐƯA các câu hỏi linh tinh gây nhiễu diễn đàn. OLM có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
a: Sửa đề: ΔBHC=ΔBDC
Ta có: H đối xứng với D qua BC
nên BC là đường trung trực của HD
=>BH=BD; CH=CD
Xét ΔBHC và ΔBDC có
BH=BD
BC chung
HC=DC
Do đó: ΔBHC=ΔBDC
b: Xét tứ giác ABDC có \(\widehat{ABD}+\widehat{ACD}=180^0\)
nên ABDC là tứ giác nội tiếp
=>ABDC có các góc đối bù nhau